The task of modeling and analyzing intercepted multifunction radars(MFRs)pulse trains is vital for cognitive electronic reconnaissance.Existing methodologies predominantly rely on prior information or heavily constrai...The task of modeling and analyzing intercepted multifunction radars(MFRs)pulse trains is vital for cognitive electronic reconnaissance.Existing methodologies predominantly rely on prior information or heavily constrained models,posing challenges for non-cooperative applications.This paper introduces a novel approach to model MFRs using a Bayesian network,where the conditional probability density function is approximated by an autoregressive kernel mixture network(ARKMN).Utilizing the estimated probability density function,a dynamic programming algorithm is proposed for denoising and detecting change points in the intercepted MFRs pulse trains.Simulation results affirm the proposed method's efficacy in modeling MFRs,outperforming the state-of-the-art in pulse train denoising and change point detection.展开更多
In order to solve the problem of uncertainty and fuzzy information in the process of weapon equipment system selec-tion,a multi-attribute decision-making(MADM)method based on probabilistic hesitant fuzzy set(PHFS)is p...In order to solve the problem of uncertainty and fuzzy information in the process of weapon equipment system selec-tion,a multi-attribute decision-making(MADM)method based on probabilistic hesitant fuzzy set(PHFS)is proposed.Firstly,we introduce the concept of probability and fuzzy entropy to mea-sure the ambiguity,hesitation and uncertainty of probabilistic hesitant fuzzy elements(PHFEs).Sequentially,the expert trust network is constructed,and the importance of each expert in the network can be obtained by calculating the cumulative trust value under multiple trust propagation paths,so as to obtain the expert weight vector.Finally,we put forward an MADM method combining the probabilistic hesitant fuzzy entropy and grey rela-tion analysis(GRA)model,and an illustrative case is employed to prove the feasibility and effectiveness of the method when solving the weapon system selection decision-making problem.展开更多
Probabilistic analysis is a rational approach for engineering design because it provides more insight than traditional deterministic analysis. Probabilistic evaluation on seismic stability of three dimensional (3D) sl...Probabilistic analysis is a rational approach for engineering design because it provides more insight than traditional deterministic analysis. Probabilistic evaluation on seismic stability of three dimensional (3D) slopes is studied in this paper. The slope safety factor is computed by combining the kinematic approach of limit analysis using a three-dimensional rotational failure mechanism with the pseudo-dynamic approach. The variability of input parameters, including six pseudo-dynamic parameters and two soil shear strength parameters, are taken into account by means of Monte-Carlo Simulations (MCS) method. The influences of pseudo-dynamic input variables on the computed failure probabilities are investigated and discussed. It is shown that the obtained failure probabilities increase with the pseudo-dynamic input variables and the pseudo-dynamic approach gives more conservative failure probability estimates compared with the pseudo-static approach.展开更多
Joint probabilistic data association is an effective method for tracking multiple targets in clutter, but only the target kinematic information is used in measure-to-track association. If the kinematic likelihoods are...Joint probabilistic data association is an effective method for tracking multiple targets in clutter, but only the target kinematic information is used in measure-to-track association. If the kinematic likelihoods are similar for different closely spaced targets, there is ambiguity in using the kinematic information alone; the correct association probability will decrease in conventional joint probabilistic data association algorithm and track coalescence will occur easily. A modified algorithm of joint probabilistic data association with classification-aided is presented, which avoids track coalescence when tracking multiple neighboring targets. Firstly, an identification matrix is defined, which is used to simplify validation matrix to decrease computational complexity. Then, target class information is integrated into the data association process. Performance comparisons with and without the use of class information in JPDA are presented on multiple closely spaced maneuvering targets tracking problem. Simulation results quantify the benefits of classification-aided JPDA for improved multiple targets tracking, especially in the presence of association uncertainty in the kinematic measurement and target maneuvering. Simulation results indicate that the algorithm is valid.展开更多
The traditional voltage stability analysis method is mostly based on the deterministic mode1.and ignores the uncertainties of bus loads,power supplies,changes in network configuration and so on.However,the great expan...The traditional voltage stability analysis method is mostly based on the deterministic mode1.and ignores the uncertainties of bus loads,power supplies,changes in network configuration and so on.However,the great expansion of renewable power generations such as wind and solar energy in a power system has increased their uncertainty,and仃aditional techniques are limited in capturing their variable behavior.This leads to greater needs of new techniques and methodologies to properly quan tify the voltage stability of power systems.展开更多
For unacceptable computational efficiency and accuracy on the probabilistic analysis of multi-component system with multi-failure modes,this paper proposed multi-extremum response surface method(MERSM).MERSM model was...For unacceptable computational efficiency and accuracy on the probabilistic analysis of multi-component system with multi-failure modes,this paper proposed multi-extremum response surface method(MERSM).MERSM model was established based on quadratic polynomial function by taking extremum response surface model as the sub-model of multi-response surface method.The dynamic probabilistic analysis of an aeroengine turbine blisk with two components,and their reliability of deformation and stress failures was obtained,based on thermal-structural coupling technique,by considering the nonlinearity of material parameters and the transients of gas flow,gas temperature and rotational speed.The results show that the comprehensive reliability of structure is 0.9904 when the allowable deformations and stresses of blade and disk are 4.78×10–3 m and 1.41×109 Pa,and 1.64×10–3 m and 1.04×109 Pa,respectively.Besides,gas temperature and rotating speed severely influence the comprehensive reliability of system.Through the comparison of methods,it is shown that the MERSM holds higher computational precision and speed in the probabilistic analysis of turbine blisk,and MERSM computational precision satisfies the requirement of engineering design.The efforts of this study address the difficulties on transients and multiple models coupling for the dynamic probabilistic analysis of multi-component system with multi-failure modes.展开更多
In order to describe and control the stress distribution and total deformation of bladed disk assemblies used in the aeroengine, a highly efficient and precise method of probabilistic analysis which is called extremum...In order to describe and control the stress distribution and total deformation of bladed disk assemblies used in the aeroengine, a highly efficient and precise method of probabilistic analysis which is called extremum response surface method(ERSM) is produced based on the previous deterministic analysis results with the finite element model(FEM). In this work, many key nonlinear factors, such as the dynamic feature of the temperature load, the centrifugal force and the boundary conditions, are taken into consideration for the model. The changing patterns with time of bladed disk assemblies about stress distribution and total deformation are obtained during the deterministic analysis, and at the same time, the largest deformation and stress nodes of bladed disk assemblies are found and taken as input target of probabilistic analysis in a scientific and reasonable way. Not only their reliability, historical sample, extreme response surface(ERS) and the cumulative probability distribution function but also their sensitivity and effect probability are obtained. Main factors affecting stress distribution and total deformation of bladed disk assemblies are investigated through the sensitivity analysis of the model. Finally, compared with the response surface method(RSM) and the Monte Carlo simulation(MCS), the results show that this new approach is effective.展开更多
As a generalization of fuzzy set,hesitant probabilistic fuzzy set and pythagorean triangular fuzzy set have their own unique advantages in describing decision information.As modern socioeconomic decision-making proble...As a generalization of fuzzy set,hesitant probabilistic fuzzy set and pythagorean triangular fuzzy set have their own unique advantages in describing decision information.As modern socioeconomic decision-making problems are becoming more and more complex,it also becomes more and more difficult to appropriately depict decision makers’cognitive information in decision-making process.In order to describe the decision information more comprehensively,we define a pythagorean probabilistic hesitant triangular fuzzy set(PPHTFS)by combining the pythagorean triangular fuzzy set and the probabilistic hesitant fuzzy set.Firstly,the basic operation and scoring function of the pythagorean probabilistic hesitant triangular fuzzy element(PPHTFE)are proposed,and the comparison rule of two PPHTFEs is given.Then,some pythagorean probabilistic hesitant triangular fuzzy aggregation operators are developed,and their properties are also studied.Finally,a multi-attribute decision-making(MADM)model is constructed based on the proposed operators under the pythagorean probabilistic hesitant triangular fuzzy information,and an illustration example is given to demonstrate the practicability and validity of the proposed decision-making method.展开更多
To make full use of the gas resource, stabilize the pipe network pressure, and obtain higher economic benefits in the iron and steel industry, the surplus gas prediction and scheduling models were proposed. Before app...To make full use of the gas resource, stabilize the pipe network pressure, and obtain higher economic benefits in the iron and steel industry, the surplus gas prediction and scheduling models were proposed. Before applying the forecasting techniques, a support vector classifier was first used to classify the data, and then the filtering was used to create separate trend and volatility sequences. After forecasting, the Markov chain transition probability matrix was introduced to adjust the residual. Simulation results using surplus gas data from an iron and steel enterprise demonstrate that the constructed SVC-HP-ENN-LSSVM-MC prediction model prediction is accurate, and that the classification accuracy is high under different conditions. Based on this, the scheduling model was constructed for surplus gas operating, and it has been used to investigate the comprehensive measures for managing the operational probabilistic risk and optimize the economic benefit at various working conditions and implementations. It has extended the concepts of traditional surplus gas dispatching systems, and provides a method for enterprises to determine optimal schedules.展开更多
A method to estimate the probabilistic density function (PDF) of shear strength parameters was proposed. The second Chebyshev orthogonal polynomial(SCOP) combined with sample moments (the origin moments) was use...A method to estimate the probabilistic density function (PDF) of shear strength parameters was proposed. The second Chebyshev orthogonal polynomial(SCOP) combined with sample moments (the origin moments) was used to approximate the PDF of parameters. X^2 test was adopted to verify the availability of the method. It is distribution-free because no classical theoretical distributions were assumed in advance and the inference result provides a universal form of probability density curves. Six most commonly-used theoretical distributions named normal, lognormal, extreme value Ⅰ , gama, beta and Weibull distributions were used to verify SCOP method. An example from the observed data of cohesion c of a kind of silt clay was presented for illustrative purpose. The results show that the acceptance levels in SCOP are all smaller than those in the classical finite comparative method and the SCOP function is more accurate and effective in the reliability analysis of geotechnical engineering.展开更多
The remain passenger problem at subway station platform was defined initially,and the period variation of remain passenger queues at platform was investigated through arriving and boarding analyses.Taking remain passe...The remain passenger problem at subway station platform was defined initially,and the period variation of remain passenger queues at platform was investigated through arriving and boarding analyses.Taking remain passenger queues at platform as dynamic stochastic process,a new probabilistic queuing method was developed based on probabilistic theory and discrete time Markov chain theory.This model can calculate remain passenger queues while considering different directions.Considering the stable or variable train arriving period and different platform crossing types,a series of model deformation research was carried out.The probabilistic approach allows to capture the cyclic behavior of queues,measures the uncertainty of a queue state prediction by computing the evolution of its probability in time,and gives any temporal distribution of the arrivals.Compared with the actual data,the deviation of experimental results is less than 20%,which shows the efficiency of probabilistic approach clearly.展开更多
Person-borne improvised explosive devices(PBIEDs)are often used in terrorist attacks in Western countries.This study aims to predict the trajectories of PBIED fragments and the subsequent safety risks for people expos...Person-borne improvised explosive devices(PBIEDs)are often used in terrorist attacks in Western countries.This study aims to predict the trajectories of PBIED fragments and the subsequent safety risks for people exposed to this hazard.An explosive field test with a typical PBIED composed of a plastic explosive charge and steel nut enhancements was performed to record initial fragment behaviour,including positions,velocity,and trajectory angles.These data were used to predict the full trajectory of PBIED fragments using a probabilistic analysis.In the probabilistic analyses a probability of fatality or serious injury was computed.Based on the results presented,many practical conclusions can be drawn,for instance,regarding safe evacuation distances if a person were exposed to a suspected PBIED.展开更多
Assessing the vulnerability of a platform is crucial in its design.In fact,the results obtained from vulnerability analyses provide valuable information,leading to precise design choices or corrective solutions that e...Assessing the vulnerability of a platform is crucial in its design.In fact,the results obtained from vulnerability analyses provide valuable information,leading to precise design choices or corrective solutions that enhance the platform's chances of surviving different scenarios.Such scenarios can involve various types of threats that can affect the platform's survivability.Among such,blast waves impacting the platform's structure represent critical conditions that have not yet been studied in detail.That is,frameworks for vulnerability assessment that can deal with blast loading have not been presented yet.In this context,this work presents a fast-running engineering tool that can quantify the risk that a structure fails when it is subjected to blast loading from the detonation of high explosive-driven threats detonating at various distances from the structure itself.The tool has been implemented in an in-house software that calculates vulnerability to various impacting objects,and its capabilities have been shown through a simplified,yet realistic,case study.The novelty of this research lies in the development of an integrated computational environment capable of calculating the platform's vulnerability to blast waves,without the need for running expensive finite element simulations.In fact,the proposed tool is fully based on analytical models integrated with a probabilistic approach for vulnerability calculation.展开更多
Multi-attribute decision problems where the performances of the alternatives are random variables are considered. The suggested approach grades the probabilities of preference of one alternative over another with resp...Multi-attribute decision problems where the performances of the alternatives are random variables are considered. The suggested approach grades the probabilities of preference of one alternative over another with respect to the same attribute. Based on the graded probabilistic dominance relation, the pairwise comparison information table is defined. The global preferences of the decision maker can be seen as a rough binary relation. The present paper proposes to approximate this preference relation by means of the graded probabilistic dominance relation with respect to the subsets of attributes. At last, the method is illustrated by an example.展开更多
A novel approach for engineering application to human error probability quantification is presented based on an overview of the existing human reliability analysis methods. The set of performance shaping factors is cl...A novel approach for engineering application to human error probability quantification is presented based on an overview of the existing human reliability analysis methods. The set of performance shaping factors is classified as two subsets of dominant factors and adjusting factors respectively. Firstly, the dominant factors are used to determine the probabilities of three behavior modes. The basic probability and its interval of human error for each behavior mode are given. Secondly, the basic probability and its interval are modified by the adjusting factors, and the total probability of human error is calculated by a total probability formula. Finally, a simple example is introduced, and the consistency and validity of the presented approach are illustrated.展开更多
In previous researches on a model-based diagnostic system, the components are assumed mutually independent. Howerver , the assumption is not always the case because the information about whether a component is faulty ...In previous researches on a model-based diagnostic system, the components are assumed mutually independent. Howerver , the assumption is not always the case because the information about whether a component is faulty or not usually influences our knowledge about other components. Some experts may draw such a conclusion that 'if component m 1 is faulty, then component m 2 may be faulty too'. How can we use this experts' knowledge to aid the diagnosis? Based on Kohlas's probabilistic assumption-based reasoning method, we use Bayes networks to solve this problem. We calculate the posterior fault probability of the components in the observation state. The result is reasonable and reflects the effectiveness of the experts' knowledge.展开更多
Due to people’s increasing dependence on social networks,it is essential to develop a consensus model considering not only their own factors but also the interaction between people.Both external trust relationship am...Due to people’s increasing dependence on social networks,it is essential to develop a consensus model considering not only their own factors but also the interaction between people.Both external trust relationship among experts and the internal reliability of experts are important factors in decision-making.This paper focuses on improving the scientificity and effectiveness of decision-making and presents a consensus model combining trust relationship among experts and expert reliability in social network group decision-making(SN-GDM).A concept named matching degree is proposed to measure expert reliability.Meanwhile,linguistic information is applied to manage the imprecise and vague information.Matching degree is expressed by a 2-tuple linguistic model,and experts’preferences are measured by a probabilistic linguistic term set(PLTS).Subsequently,a hybrid weight is explored to weigh experts’importance in a group.Then a consensus measure is introduced and a feedback mechanism is developed to produce some personalized recommendations with higher group consensus.Finally,a comparative example is provided to prove the scientificity and effectiveness of the proposed consensus model.展开更多
Ride and handling are two paramount factors in design and development of vehicle suspension systems. Conflicting trends in ride and handling characteristics propel engineers toward employing multi-objective optimizati...Ride and handling are two paramount factors in design and development of vehicle suspension systems. Conflicting trends in ride and handling characteristics propel engineers toward employing multi-objective optimization methods capable of providing the best trade-off designs compromising both criteria simultaneously. Although many studies have been performed on multi-objective optimization of vehicle suspension system, only a few of them have used probabilistic approaches considering effects of uncertainties in the design. However, it has been proved that optimum point obtained from deterministic optimization without taking into account the effects of uncertainties may lead to high-risk points instead of optimum ones. In this work, reliability-based robust multi-objective optimization of a 5 degree of freedom (5-DOF) vehicle suspension system is performed using method of non-dominated sorting genetic algorithm-II (NSGA-II) in conjunction with Monte Carlo simulation (MCS) to obtain best designs considering both comfort and handling. Road profile is modeled as a random function using power spectral density (PSD) which is in better accordance with reality. To accommodate the robust approach, the variance of all objective functions is also considered to be minimized. Also, to take into account the reliability criterion, a reliability-based constraint is considered in the optimization. A deterministic optimization has also been performed to compare the results with probabilistic study and some other deterministic studies in the literature. In addition, sensitivity analysis has been performed to reveal the effects of different design variables on objective functions. To introduce the best trade-off points from the obtained Pareto fronts, TOPSIS method has been employed. Results show that optimum design point obtained from probabilistic optimization in this work provides better performance while demonstrating very good reliability and robustness. However, other optimum points from deterministic optimizations violate the regarded constraints in the presence of uncertainties.展开更多
基金supported by the National Natural Science Foundation of China under Grant 62301119。
文摘The task of modeling and analyzing intercepted multifunction radars(MFRs)pulse trains is vital for cognitive electronic reconnaissance.Existing methodologies predominantly rely on prior information or heavily constrained models,posing challenges for non-cooperative applications.This paper introduces a novel approach to model MFRs using a Bayesian network,where the conditional probability density function is approximated by an autoregressive kernel mixture network(ARKMN).Utilizing the estimated probability density function,a dynamic programming algorithm is proposed for denoising and detecting change points in the intercepted MFRs pulse trains.Simulation results affirm the proposed method's efficacy in modeling MFRs,outperforming the state-of-the-art in pulse train denoising and change point detection.
基金supported by the National Natural Science Foundation of China(71901214).
文摘In order to solve the problem of uncertainty and fuzzy information in the process of weapon equipment system selec-tion,a multi-attribute decision-making(MADM)method based on probabilistic hesitant fuzzy set(PHFS)is proposed.Firstly,we introduce the concept of probability and fuzzy entropy to mea-sure the ambiguity,hesitation and uncertainty of probabilistic hesitant fuzzy elements(PHFEs).Sequentially,the expert trust network is constructed,and the importance of each expert in the network can be obtained by calculating the cumulative trust value under multiple trust propagation paths,so as to obtain the expert weight vector.Finally,we put forward an MADM method combining the probabilistic hesitant fuzzy entropy and grey rela-tion analysis(GRA)model,and an illustrative case is employed to prove the feasibility and effectiveness of the method when solving the weapon system selection decision-making problem.
文摘Probabilistic analysis is a rational approach for engineering design because it provides more insight than traditional deterministic analysis. Probabilistic evaluation on seismic stability of three dimensional (3D) slopes is studied in this paper. The slope safety factor is computed by combining the kinematic approach of limit analysis using a three-dimensional rotational failure mechanism with the pseudo-dynamic approach. The variability of input parameters, including six pseudo-dynamic parameters and two soil shear strength parameters, are taken into account by means of Monte-Carlo Simulations (MCS) method. The influences of pseudo-dynamic input variables on the computed failure probabilities are investigated and discussed. It is shown that the obtained failure probabilities increase with the pseudo-dynamic input variables and the pseudo-dynamic approach gives more conservative failure probability estimates compared with the pseudo-static approach.
基金Defense Advanced Research Project "the Techniques of Information Integrated Processing and Fusion" in the Eleventh Five-Year Plan (513060302).
文摘Joint probabilistic data association is an effective method for tracking multiple targets in clutter, but only the target kinematic information is used in measure-to-track association. If the kinematic likelihoods are similar for different closely spaced targets, there is ambiguity in using the kinematic information alone; the correct association probability will decrease in conventional joint probabilistic data association algorithm and track coalescence will occur easily. A modified algorithm of joint probabilistic data association with classification-aided is presented, which avoids track coalescence when tracking multiple neighboring targets. Firstly, an identification matrix is defined, which is used to simplify validation matrix to decrease computational complexity. Then, target class information is integrated into the data association process. Performance comparisons with and without the use of class information in JPDA are presented on multiple closely spaced maneuvering targets tracking problem. Simulation results quantify the benefits of classification-aided JPDA for improved multiple targets tracking, especially in the presence of association uncertainty in the kinematic measurement and target maneuvering. Simulation results indicate that the algorithm is valid.
文摘The traditional voltage stability analysis method is mostly based on the deterministic mode1.and ignores the uncertainties of bus loads,power supplies,changes in network configuration and so on.However,the great expansion of renewable power generations such as wind and solar energy in a power system has increased their uncertainty,and仃aditional techniques are limited in capturing their variable behavior.This leads to greater needs of new techniques and methodologies to properly quan tify the voltage stability of power systems.
基金Projects (51275138,51605016) supported by the National Natural Science Foundation of ChinaProject (12531109) supported by the Science Foundation of Heilongjiang Provincial Department of Education,ChinaProject supported by Research Start-up Funding of Fudan University,China
文摘For unacceptable computational efficiency and accuracy on the probabilistic analysis of multi-component system with multi-failure modes,this paper proposed multi-extremum response surface method(MERSM).MERSM model was established based on quadratic polynomial function by taking extremum response surface model as the sub-model of multi-response surface method.The dynamic probabilistic analysis of an aeroengine turbine blisk with two components,and their reliability of deformation and stress failures was obtained,based on thermal-structural coupling technique,by considering the nonlinearity of material parameters and the transients of gas flow,gas temperature and rotational speed.The results show that the comprehensive reliability of structure is 0.9904 when the allowable deformations and stresses of blade and disk are 4.78×10–3 m and 1.41×109 Pa,and 1.64×10–3 m and 1.04×109 Pa,respectively.Besides,gas temperature and rotating speed severely influence the comprehensive reliability of system.Through the comparison of methods,it is shown that the MERSM holds higher computational precision and speed in the probabilistic analysis of turbine blisk,and MERSM computational precision satisfies the requirement of engineering design.The efforts of this study address the difficulties on transients and multiple models coupling for the dynamic probabilistic analysis of multi-component system with multi-failure modes.
基金Projects(51375032,51175017,51245027)supported by the National Natural Science Foundation of China
文摘In order to describe and control the stress distribution and total deformation of bladed disk assemblies used in the aeroengine, a highly efficient and precise method of probabilistic analysis which is called extremum response surface method(ERSM) is produced based on the previous deterministic analysis results with the finite element model(FEM). In this work, many key nonlinear factors, such as the dynamic feature of the temperature load, the centrifugal force and the boundary conditions, are taken into consideration for the model. The changing patterns with time of bladed disk assemblies about stress distribution and total deformation are obtained during the deterministic analysis, and at the same time, the largest deformation and stress nodes of bladed disk assemblies are found and taken as input target of probabilistic analysis in a scientific and reasonable way. Not only their reliability, historical sample, extreme response surface(ERS) and the cumulative probability distribution function but also their sensitivity and effect probability are obtained. Main factors affecting stress distribution and total deformation of bladed disk assemblies are investigated through the sensitivity analysis of the model. Finally, compared with the response surface method(RSM) and the Monte Carlo simulation(MCS), the results show that this new approach is effective.
基金supported by the Key Research and Development Project of Hunan Province(2019SK2331)the Natural Science Foundation of Hunan Province(2019JJ40099,2019JJ40100,2020JJ4339)+2 种基金the Key Scientific Research Project of Hunan Education Department(18A317,19A202)the Scientific Research Fund of Hunan Provincial Education Department(20B272)the Innovation Foundation for Postgraduate of Hunan Institute of Science and Technology(YCX2020A34).
文摘As a generalization of fuzzy set,hesitant probabilistic fuzzy set and pythagorean triangular fuzzy set have their own unique advantages in describing decision information.As modern socioeconomic decision-making problems are becoming more and more complex,it also becomes more and more difficult to appropriately depict decision makers’cognitive information in decision-making process.In order to describe the decision information more comprehensively,we define a pythagorean probabilistic hesitant triangular fuzzy set(PPHTFS)by combining the pythagorean triangular fuzzy set and the probabilistic hesitant fuzzy set.Firstly,the basic operation and scoring function of the pythagorean probabilistic hesitant triangular fuzzy element(PPHTFE)are proposed,and the comparison rule of two PPHTFEs is given.Then,some pythagorean probabilistic hesitant triangular fuzzy aggregation operators are developed,and their properties are also studied.Finally,a multi-attribute decision-making(MADM)model is constructed based on the proposed operators under the pythagorean probabilistic hesitant triangular fuzzy information,and an illustration example is given to demonstrate the practicability and validity of the proposed decision-making method.
基金Project(51204082)supported by the National Natural Science Foundation of ChinaProject(KKSY201458118)supported by the Talent Cultivation Project of Kuning University of Science and Technology,China
文摘To make full use of the gas resource, stabilize the pipe network pressure, and obtain higher economic benefits in the iron and steel industry, the surplus gas prediction and scheduling models were proposed. Before applying the forecasting techniques, a support vector classifier was first used to classify the data, and then the filtering was used to create separate trend and volatility sequences. After forecasting, the Markov chain transition probability matrix was introduced to adjust the residual. Simulation results using surplus gas data from an iron and steel enterprise demonstrate that the constructed SVC-HP-ENN-LSSVM-MC prediction model prediction is accurate, and that the classification accuracy is high under different conditions. Based on this, the scheduling model was constructed for surplus gas operating, and it has been used to investigate the comprehensive measures for managing the operational probabilistic risk and optimize the economic benefit at various working conditions and implementations. It has extended the concepts of traditional surplus gas dispatching systems, and provides a method for enterprises to determine optimal schedules.
基金Projects(50490274 , 10472134 , 50404010) supported by the National Natural Science Foundation of China project(2002CB412703) supported by the Key Fundamental Research and Development Programof China
文摘A method to estimate the probabilistic density function (PDF) of shear strength parameters was proposed. The second Chebyshev orthogonal polynomial(SCOP) combined with sample moments (the origin moments) was used to approximate the PDF of parameters. X^2 test was adopted to verify the availability of the method. It is distribution-free because no classical theoretical distributions were assumed in advance and the inference result provides a universal form of probability density curves. Six most commonly-used theoretical distributions named normal, lognormal, extreme value Ⅰ , gama, beta and Weibull distributions were used to verify SCOP method. An example from the observed data of cohesion c of a kind of silt clay was presented for illustrative purpose. The results show that the acceptance levels in SCOP are all smaller than those in the classical finite comparative method and the SCOP function is more accurate and effective in the reliability analysis of geotechnical engineering.
基金Project(2011BAG01B01) supported by the Major State Basic Research and Development Program of ChinaProject(RCS2012ZZ002) supported by the State Key Lab of Rail Traffic Control and Safety,China
文摘The remain passenger problem at subway station platform was defined initially,and the period variation of remain passenger queues at platform was investigated through arriving and boarding analyses.Taking remain passenger queues at platform as dynamic stochastic process,a new probabilistic queuing method was developed based on probabilistic theory and discrete time Markov chain theory.This model can calculate remain passenger queues while considering different directions.Considering the stable or variable train arriving period and different platform crossing types,a series of model deformation research was carried out.The probabilistic approach allows to capture the cyclic behavior of queues,measures the uncertainty of a queue state prediction by computing the evolution of its probability in time,and gives any temporal distribution of the arrivals.Compared with the actual data,the deviation of experimental results is less than 20%,which shows the efficiency of probabilistic approach clearly.
基金This work was supported by the Poland National Center for Research and Development,under the grant DOB-BIO10/01/02/2019 within the Defence and Security Programme.
文摘Person-borne improvised explosive devices(PBIEDs)are often used in terrorist attacks in Western countries.This study aims to predict the trajectories of PBIED fragments and the subsequent safety risks for people exposed to this hazard.An explosive field test with a typical PBIED composed of a plastic explosive charge and steel nut enhancements was performed to record initial fragment behaviour,including positions,velocity,and trajectory angles.These data were used to predict the full trajectory of PBIED fragments using a probabilistic analysis.In the probabilistic analyses a probability of fatality or serious injury was computed.Based on the results presented,many practical conclusions can be drawn,for instance,regarding safe evacuation distances if a person were exposed to a suspected PBIED.
文摘Assessing the vulnerability of a platform is crucial in its design.In fact,the results obtained from vulnerability analyses provide valuable information,leading to precise design choices or corrective solutions that enhance the platform's chances of surviving different scenarios.Such scenarios can involve various types of threats that can affect the platform's survivability.Among such,blast waves impacting the platform's structure represent critical conditions that have not yet been studied in detail.That is,frameworks for vulnerability assessment that can deal with blast loading have not been presented yet.In this context,this work presents a fast-running engineering tool that can quantify the risk that a structure fails when it is subjected to blast loading from the detonation of high explosive-driven threats detonating at various distances from the structure itself.The tool has been implemented in an in-house software that calculates vulnerability to various impacting objects,and its capabilities have been shown through a simplified,yet realistic,case study.The novelty of this research lies in the development of an integrated computational environment capable of calculating the platform's vulnerability to blast waves,without the need for running expensive finite element simulations.In fact,the proposed tool is fully based on analytical models integrated with a probabilistic approach for vulnerability calculation.
文摘Multi-attribute decision problems where the performances of the alternatives are random variables are considered. The suggested approach grades the probabilities of preference of one alternative over another with respect to the same attribute. Based on the graded probabilistic dominance relation, the pairwise comparison information table is defined. The global preferences of the decision maker can be seen as a rough binary relation. The present paper proposes to approximate this preference relation by means of the graded probabilistic dominance relation with respect to the subsets of attributes. At last, the method is illustrated by an example.
文摘A novel approach for engineering application to human error probability quantification is presented based on an overview of the existing human reliability analysis methods. The set of performance shaping factors is classified as two subsets of dominant factors and adjusting factors respectively. Firstly, the dominant factors are used to determine the probabilities of three behavior modes. The basic probability and its interval of human error for each behavior mode are given. Secondly, the basic probability and its interval are modified by the adjusting factors, and the total probability of human error is calculated by a total probability formula. Finally, a simple example is introduced, and the consistency and validity of the presented approach are illustrated.
文摘In previous researches on a model-based diagnostic system, the components are assumed mutually independent. Howerver , the assumption is not always the case because the information about whether a component is faulty or not usually influences our knowledge about other components. Some experts may draw such a conclusion that 'if component m 1 is faulty, then component m 2 may be faulty too'. How can we use this experts' knowledge to aid the diagnosis? Based on Kohlas's probabilistic assumption-based reasoning method, we use Bayes networks to solve this problem. We calculate the posterior fault probability of the components in the observation state. The result is reasonable and reflects the effectiveness of the experts' knowledge.
基金the National Natural Science Foundation of China(71871121).
文摘Due to people’s increasing dependence on social networks,it is essential to develop a consensus model considering not only their own factors but also the interaction between people.Both external trust relationship among experts and the internal reliability of experts are important factors in decision-making.This paper focuses on improving the scientificity and effectiveness of decision-making and presents a consensus model combining trust relationship among experts and expert reliability in social network group decision-making(SN-GDM).A concept named matching degree is proposed to measure expert reliability.Meanwhile,linguistic information is applied to manage the imprecise and vague information.Matching degree is expressed by a 2-tuple linguistic model,and experts’preferences are measured by a probabilistic linguistic term set(PLTS).Subsequently,a hybrid weight is explored to weigh experts’importance in a group.Then a consensus measure is introduced and a feedback mechanism is developed to produce some personalized recommendations with higher group consensus.Finally,a comparative example is provided to prove the scientificity and effectiveness of the proposed consensus model.
文摘Ride and handling are two paramount factors in design and development of vehicle suspension systems. Conflicting trends in ride and handling characteristics propel engineers toward employing multi-objective optimization methods capable of providing the best trade-off designs compromising both criteria simultaneously. Although many studies have been performed on multi-objective optimization of vehicle suspension system, only a few of them have used probabilistic approaches considering effects of uncertainties in the design. However, it has been proved that optimum point obtained from deterministic optimization without taking into account the effects of uncertainties may lead to high-risk points instead of optimum ones. In this work, reliability-based robust multi-objective optimization of a 5 degree of freedom (5-DOF) vehicle suspension system is performed using method of non-dominated sorting genetic algorithm-II (NSGA-II) in conjunction with Monte Carlo simulation (MCS) to obtain best designs considering both comfort and handling. Road profile is modeled as a random function using power spectral density (PSD) which is in better accordance with reality. To accommodate the robust approach, the variance of all objective functions is also considered to be minimized. Also, to take into account the reliability criterion, a reliability-based constraint is considered in the optimization. A deterministic optimization has also been performed to compare the results with probabilistic study and some other deterministic studies in the literature. In addition, sensitivity analysis has been performed to reveal the effects of different design variables on objective functions. To introduce the best trade-off points from the obtained Pareto fronts, TOPSIS method has been employed. Results show that optimum design point obtained from probabilistic optimization in this work provides better performance while demonstrating very good reliability and robustness. However, other optimum points from deterministic optimizations violate the regarded constraints in the presence of uncertainties.