Crashworthiness and lightweight optimization design of the crash box are studied in this paper. For the initial model, a physical test was performed to verify the model. Then, a parametric model using mesh morphing te...Crashworthiness and lightweight optimization design of the crash box are studied in this paper. For the initial model, a physical test was performed to verify the model. Then, a parametric model using mesh morphing technology is used to optimize and decrease the maximum collision force (MCF) and increase specific energy absorption (SEA) while ensure mass is not increased. Because MCF and SEA are two conflicting objectives, grey relational analysis (GRA) and principal component analysis (PCA) are employed for design optimization of the crash box. Furthermore, multi-objective analysis can convert to a single objective using the grey relational grade (GRG) simultaneously, hence, the proposed method can obtain the optimal combination of design parameters for the crash box. It can be concluded that the proposed method decreases the MCF and weight to 16.7% and 29.4% respectively, while increasing SEA to 16.4%. Meanwhile, the proposed method in comparison to the conventional NSGA-Ⅱ method, reduces the time cost by 103%. Hence, the proposed method can be properly applied to the optimization of the crash box.展开更多
Matrix principal component analysis (MatPCA), as an effective feature extraction method, can deal with the matrix pattern and the vector pattern. However, like PCA, MatPCA does not use the class information of sampl...Matrix principal component analysis (MatPCA), as an effective feature extraction method, can deal with the matrix pattern and the vector pattern. However, like PCA, MatPCA does not use the class information of samples. As a result, the extracted features cannot provide enough useful information for distinguishing pat- tern from one another, and further resulting in degradation of classification performance. To fullly use class in- formation of samples, a novel method, called the fuzzy within-class MatPCA (F-WMatPCA)is proposed. F-WMatPCA utilizes the fuzzy K-nearest neighbor method(FKNN) to fuzzify the class membership degrees of a training sample and then performs fuzzy MatPCA within these patterns having the same class label. Due to more class information is used in feature extraction, F-WMatPCA can intuitively improve the classification perfor- mance. Experimental results in face databases and some benchmark datasets show that F-WMatPCA is effective and competitive than MatPCA. The experimental analysis on face image databases indicates that F-WMatPCA im- proves the recognition accuracy and is more stable and robust in performing classification than the existing method of fuzzy-based F-Fisherfaces.展开更多
Laser-induced breakdown spectroscopy(LIBS) is a versatile tool for both qualitative and quantitative analysis.In this paper,LIBS combined with principal component analysis(PCA) and support vector machine(SVM) is...Laser-induced breakdown spectroscopy(LIBS) is a versatile tool for both qualitative and quantitative analysis.In this paper,LIBS combined with principal component analysis(PCA) and support vector machine(SVM) is applied to rock analysis.Fourteen emission lines including Fe,Mg,Ca,Al,Si,and Ti are selected as analysis lines.A good accuracy(91.38% for the real rock) is achieved by using SVM to analyze the spectroscopic peak area data which are processed by PCA.It can not only reduce the noise and dimensionality which contributes to improving the efficiency of the program,but also solve the problem of linear inseparability by combining PCA and SVM.By this method,the ability of LIBS to classify rock is validated.展开更多
Ensemble-based analyses are useful to compare equiprobable scenarios of the reservoir models.However,they require a large suite of reservoir models to cover high uncertainty in heterogeneous and complex reservoir mode...Ensemble-based analyses are useful to compare equiprobable scenarios of the reservoir models.However,they require a large suite of reservoir models to cover high uncertainty in heterogeneous and complex reservoir models.For stable convergence in ensemble Kalman filter(EnKF),increasing ensemble size can be one of the solutions,but it causes high computational cost in large-scale reservoir systems.In this paper,we propose a preprocessing of good initial model selection to reduce the ensemble size,and then,EnKF is utilized to predict production performances stochastically.In the model selection scheme,representative models are chosen by using principal component analysis(PCA)and clustering analysis.The dimension of initial models is reduced using PCA,and the reduced models are grouped by clustering.Then,we choose and simulate representative models from the cluster groups to compare errors of production predictions with historical observation data.One representative model with the minimum error is considered as the best model,and we use the ensemble members near the best model in the cluster plane for applying EnKF.We demonstrate the proposed scheme for two 3D models that EnKF provides reliable assimilation results with much reduced computation time.展开更多
In order to directly construct the mapping between multiple state parameters and remaining useful life(RUL),and reduce the interference of random error on prediction accuracy,a RUL prediction model of aeroengine based...In order to directly construct the mapping between multiple state parameters and remaining useful life(RUL),and reduce the interference of random error on prediction accuracy,a RUL prediction model of aeroengine based on principal component analysis(PCA)and one-dimensional convolution neural network(1D-CNN)is proposed in this paper.Firstly,multiple state parameters corresponding to massive cycles of aeroengine are collected and brought into PCA for dimensionality reduction,and principal components are extracted for further time series prediction.Secondly,the 1D-CNN model is constructed to directly study the mapping between principal components and RUL.Multiple convolution and pooling operations are applied for deep feature extraction,and the end-to-end RUL prediction of aeroengine can be realized.Experimental results show that the most effective principal component from the multiple state parameters can be obtained by PCA,and the long time series of multiple state parameters can be directly mapped to RUL by 1D-CNN,so as to improve the efficiency and accuracy of RUL prediction.Compared with other traditional models,the proposed method also has lower prediction error and better robustness.展开更多
On the basis of machine leaning,suitable algorithms can make advanced time series analysis.This paper proposes a complex k-nearest neighbor(KNN)model for predicting financial time series.This model uses a complex feat...On the basis of machine leaning,suitable algorithms can make advanced time series analysis.This paper proposes a complex k-nearest neighbor(KNN)model for predicting financial time series.This model uses a complex feature extraction process integrating a forward rolling empirical mode decomposition(EMD)for financial time series signal analysis and principal component analysis(PCA)for the dimension reduction.The information-rich features are extracted then input to a weighted KNN classifier where the features are weighted with PCA loading.Finally,prediction is generated via regression on the selected nearest neighbors.The structure of the model as a whole is original.The test results on real historical data sets confirm the effectiveness of the models for predicting the Chinese stock index,an individual stock,and the EUR/USD exchange rate.展开更多
This paper proposes a design optimization method for the multi-objective orbit design of earth observation satellites, for which the optimality of orbit performance indices with different units, such as: total coverag...This paper proposes a design optimization method for the multi-objective orbit design of earth observation satellites, for which the optimality of orbit performance indices with different units, such as: total coverage time, the frequency of coverage, average time per coverage and maximum coverage gap, etc. is required simultaneously. By introducing index normalization method to convert performance indices into dimensionless variables within the range of [0, 1], a design optimization method based on the principal component analysis and cluster analysis is proposed, which consists of index normalization method, principal component analysis, multiple-level cluster analysis and weighted evaluation method. The results of orbit optimization for earth observation satellites show that the optimal orbit can be obtained by using the proposed method. The principal component analysis can reduce the total number of indices with a non-independent relationship to save computing time. Similarly, the multiple-level cluster analysis with parallel computing could save computing time.展开更多
图像融合中,多数边缘保持滤波器在优化过程中会损坏细节和纹理信息,并且噪声也会严重影响融合结果,使得融合结果之间出现边界模糊和细节丢失问题。提出了一种基于RPCA(Robus principal compo-nent association)算法的红外光和可见光图...图像融合中,多数边缘保持滤波器在优化过程中会损坏细节和纹理信息,并且噪声也会严重影响融合结果,使得融合结果之间出现边界模糊和细节丢失问题。提出了一种基于RPCA(Robus principal compo-nent association)算法的红外光和可见光图像融合方法,可有效提高图象清晰度和视觉信息的保真度。首先,利用鲁棒主成分分析(RPCA)分解源图像为低秩部分和稀疏部分,并运用相对全变分和平均能量法对两者进行处理,最后通过NSCT逆变换获得融合图像。实验结果表明,与其他方法相比,该方法所得融合图像的平均梯度、空间频率、边缘强度、互信息量均有提升,提升量级分别为10.6%到72.6%、15%到60.2%、9.7%到69.6%,22.7%到229.7%。展开更多
基金Supported by the National Key Research and Development Project(2016YFB0101601)
文摘Crashworthiness and lightweight optimization design of the crash box are studied in this paper. For the initial model, a physical test was performed to verify the model. Then, a parametric model using mesh morphing technology is used to optimize and decrease the maximum collision force (MCF) and increase specific energy absorption (SEA) while ensure mass is not increased. Because MCF and SEA are two conflicting objectives, grey relational analysis (GRA) and principal component analysis (PCA) are employed for design optimization of the crash box. Furthermore, multi-objective analysis can convert to a single objective using the grey relational grade (GRG) simultaneously, hence, the proposed method can obtain the optimal combination of design parameters for the crash box. It can be concluded that the proposed method decreases the MCF and weight to 16.7% and 29.4% respectively, while increasing SEA to 16.4%. Meanwhile, the proposed method in comparison to the conventional NSGA-Ⅱ method, reduces the time cost by 103%. Hence, the proposed method can be properly applied to the optimization of the crash box.
文摘Matrix principal component analysis (MatPCA), as an effective feature extraction method, can deal with the matrix pattern and the vector pattern. However, like PCA, MatPCA does not use the class information of samples. As a result, the extracted features cannot provide enough useful information for distinguishing pat- tern from one another, and further resulting in degradation of classification performance. To fullly use class in- formation of samples, a novel method, called the fuzzy within-class MatPCA (F-WMatPCA)is proposed. F-WMatPCA utilizes the fuzzy K-nearest neighbor method(FKNN) to fuzzify the class membership degrees of a training sample and then performs fuzzy MatPCA within these patterns having the same class label. Due to more class information is used in feature extraction, F-WMatPCA can intuitively improve the classification perfor- mance. Experimental results in face databases and some benchmark datasets show that F-WMatPCA is effective and competitive than MatPCA. The experimental analysis on face image databases indicates that F-WMatPCA im- proves the recognition accuracy and is more stable and robust in performing classification than the existing method of fuzzy-based F-Fisherfaces.
基金Project supported by the National Natural Science Foundation of China(Grant No.11075184)the Knowledge Innovation Program of the Chinese Academy of Sciences(CAS)(Grant No.Y03RC21124)the CAS President’s International Fellowship Initiative Foundation(Grant No.2015VMA007)
文摘Laser-induced breakdown spectroscopy(LIBS) is a versatile tool for both qualitative and quantitative analysis.In this paper,LIBS combined with principal component analysis(PCA) and support vector machine(SVM) is applied to rock analysis.Fourteen emission lines including Fe,Mg,Ca,Al,Si,and Ti are selected as analysis lines.A good accuracy(91.38% for the real rock) is achieved by using SVM to analyze the spectroscopic peak area data which are processed by PCA.It can not only reduce the noise and dimensionality which contributes to improving the efficiency of the program,but also solve the problem of linear inseparability by combining PCA and SVM.By this method,the ability of LIBS to classify rock is validated.
基金supported by The Ministry of Trade,Industry,and Energy(20172510102090,20142520100440,20162010201980)Global PhD Fellowship Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(2015H1A2A1030756)supported by the National Research Foundation of Korea(NRF)Grant(No.2018R1C1B5045260).
文摘Ensemble-based analyses are useful to compare equiprobable scenarios of the reservoir models.However,they require a large suite of reservoir models to cover high uncertainty in heterogeneous and complex reservoir models.For stable convergence in ensemble Kalman filter(EnKF),increasing ensemble size can be one of the solutions,but it causes high computational cost in large-scale reservoir systems.In this paper,we propose a preprocessing of good initial model selection to reduce the ensemble size,and then,EnKF is utilized to predict production performances stochastically.In the model selection scheme,representative models are chosen by using principal component analysis(PCA)and clustering analysis.The dimension of initial models is reduced using PCA,and the reduced models are grouped by clustering.Then,we choose and simulate representative models from the cluster groups to compare errors of production predictions with historical observation data.One representative model with the minimum error is considered as the best model,and we use the ensemble members near the best model in the cluster plane for applying EnKF.We demonstrate the proposed scheme for two 3D models that EnKF provides reliable assimilation results with much reduced computation time.
基金supported by Jiangsu Social Science Foundation(No.20GLD008)Science,Technology Projects of Jiangsu Provincial Department of Communications(No.2020Y14)Joint Fund for Civil Aviation Research(No.U1933202)。
文摘In order to directly construct the mapping between multiple state parameters and remaining useful life(RUL),and reduce the interference of random error on prediction accuracy,a RUL prediction model of aeroengine based on principal component analysis(PCA)and one-dimensional convolution neural network(1D-CNN)is proposed in this paper.Firstly,multiple state parameters corresponding to massive cycles of aeroengine are collected and brought into PCA for dimensionality reduction,and principal components are extracted for further time series prediction.Secondly,the 1D-CNN model is constructed to directly study the mapping between principal components and RUL.Multiple convolution and pooling operations are applied for deep feature extraction,and the end-to-end RUL prediction of aeroengine can be realized.Experimental results show that the most effective principal component from the multiple state parameters can be obtained by PCA,and the long time series of multiple state parameters can be directly mapped to RUL by 1D-CNN,so as to improve the efficiency and accuracy of RUL prediction.Compared with other traditional models,the proposed method also has lower prediction error and better robustness.
基金supported by the Social Science Foundation of China under Grant No.17BGL231。
文摘On the basis of machine leaning,suitable algorithms can make advanced time series analysis.This paper proposes a complex k-nearest neighbor(KNN)model for predicting financial time series.This model uses a complex feature extraction process integrating a forward rolling empirical mode decomposition(EMD)for financial time series signal analysis and principal component analysis(PCA)for the dimension reduction.The information-rich features are extracted then input to a weighted KNN classifier where the features are weighted with PCA loading.Finally,prediction is generated via regression on the selected nearest neighbors.The structure of the model as a whole is original.The test results on real historical data sets confirm the effectiveness of the models for predicting the Chinese stock index,an individual stock,and the EUR/USD exchange rate.
基金Funded by 973 Program of Ministry of National Defense of China(Grant No.613237)
文摘This paper proposes a design optimization method for the multi-objective orbit design of earth observation satellites, for which the optimality of orbit performance indices with different units, such as: total coverage time, the frequency of coverage, average time per coverage and maximum coverage gap, etc. is required simultaneously. By introducing index normalization method to convert performance indices into dimensionless variables within the range of [0, 1], a design optimization method based on the principal component analysis and cluster analysis is proposed, which consists of index normalization method, principal component analysis, multiple-level cluster analysis and weighted evaluation method. The results of orbit optimization for earth observation satellites show that the optimal orbit can be obtained by using the proposed method. The principal component analysis can reduce the total number of indices with a non-independent relationship to save computing time. Similarly, the multiple-level cluster analysis with parallel computing could save computing time.
文摘图像融合中,多数边缘保持滤波器在优化过程中会损坏细节和纹理信息,并且噪声也会严重影响融合结果,使得融合结果之间出现边界模糊和细节丢失问题。提出了一种基于RPCA(Robus principal compo-nent association)算法的红外光和可见光图像融合方法,可有效提高图象清晰度和视觉信息的保真度。首先,利用鲁棒主成分分析(RPCA)分解源图像为低秩部分和稀疏部分,并运用相对全变分和平均能量法对两者进行处理,最后通过NSCT逆变换获得融合图像。实验结果表明,与其他方法相比,该方法所得融合图像的平均梯度、空间频率、边缘强度、互信息量均有提升,提升量级分别为10.6%到72.6%、15%到60.2%、9.7%到69.6%,22.7%到229.7%。