Due to the inherent working mode of rotating detonation engine(RDE),the detonation flow field has the characteristics of pressure oscillation and axial kinetic energy loss,which makes it difficult to design nozzle and...Due to the inherent working mode of rotating detonation engine(RDE),the detonation flow field has the characteristics of pressure oscillation and axial kinetic energy loss,which makes it difficult to design nozzle and improve propulsion performance.Therefore,in order to improve the characteristics of detonation flow field,the three-dimensional numerical simulation of annular chamber and hollow chamber is carried out with premixed hydrogen/air as fuel in this paper,and then tries to combine the two chambers to weaken the oscillation characteristics of detonation flow field through the interaction of detonation flow field,which is a new method to regulate the detonation flow field.The results show that there are four states of velocity vectors at the outlet of annular chamber and hollow chamber,which makes RDE be affected by rolling moment and results in the loss of axial kinetic energy.In the external flow field of combined chamber,the phenomenon of cyclic reflection of expansion wave and compression wave on the free boundary is observed,which results in Mach disk structure.Moreover,the pressure monitoring points are set at the external flow field.The pressure signal shows that the high-frequency pressure oscillation at the external flow field of the combined chamber has been greatly weakened.Compared to the annular chamber,the relative standard deviation(RSD) has been reduced from 14.6% to5.6%.The results thus demonstrate that this method is feasible to adjust the pressure oscillation characteristics of the detonation flow field,and is of great significance to promote the potential of RDE and nozzle design.展开更多
Pressure oscillation in solid rocket motor is believed to be the results of the interaction between the flow instability and the acoustics of combustion chamber.Several reasonable and necessary hypothesizes are given ...Pressure oscillation in solid rocket motor is believed to be the results of the interaction between the flow instability and the acoustics of combustion chamber.Several reasonable and necessary hypothesizes are given to establish an equation to describe this coupling.A cold flow motor called CVS60D(corner vortex shedding 60°)was designed to study the flow-acoustic coupling based on theoretical analysis.Experimental investigations were carried out to determine the acoustics of CVS60D.Corner vortex shedding is generated at the backward facing step which is designed similar to the geometry of the motor with finocyl propellant after the burnout of its fins.A pintle was used to modify the velocity in the duct to change the frequency of vortex shedding.It is found that large amplitude pressure oscillation occurs when the pintle moves to a range of specific position,which indicates that the frequency of vortex shedding is close to one order of acoustic modes of combustion chamber.The amplitude of pressure oscillation changes as the pintle moves.展开更多
文摘Due to the inherent working mode of rotating detonation engine(RDE),the detonation flow field has the characteristics of pressure oscillation and axial kinetic energy loss,which makes it difficult to design nozzle and improve propulsion performance.Therefore,in order to improve the characteristics of detonation flow field,the three-dimensional numerical simulation of annular chamber and hollow chamber is carried out with premixed hydrogen/air as fuel in this paper,and then tries to combine the two chambers to weaken the oscillation characteristics of detonation flow field through the interaction of detonation flow field,which is a new method to regulate the detonation flow field.The results show that there are four states of velocity vectors at the outlet of annular chamber and hollow chamber,which makes RDE be affected by rolling moment and results in the loss of axial kinetic energy.In the external flow field of combined chamber,the phenomenon of cyclic reflection of expansion wave and compression wave on the free boundary is observed,which results in Mach disk structure.Moreover,the pressure monitoring points are set at the external flow field.The pressure signal shows that the high-frequency pressure oscillation at the external flow field of the combined chamber has been greatly weakened.Compared to the annular chamber,the relative standard deviation(RSD) has been reduced from 14.6% to5.6%.The results thus demonstrate that this method is feasible to adjust the pressure oscillation characteristics of the detonation flow field,and is of great significance to promote the potential of RDE and nozzle design.
基金Sponsored by the National Nature Science Foundation of China(10602047)
文摘Pressure oscillation in solid rocket motor is believed to be the results of the interaction between the flow instability and the acoustics of combustion chamber.Several reasonable and necessary hypothesizes are given to establish an equation to describe this coupling.A cold flow motor called CVS60D(corner vortex shedding 60°)was designed to study the flow-acoustic coupling based on theoretical analysis.Experimental investigations were carried out to determine the acoustics of CVS60D.Corner vortex shedding is generated at the backward facing step which is designed similar to the geometry of the motor with finocyl propellant after the burnout of its fins.A pintle was used to modify the velocity in the duct to change the frequency of vortex shedding.It is found that large amplitude pressure oscillation occurs when the pintle moves to a range of specific position,which indicates that the frequency of vortex shedding is close to one order of acoustic modes of combustion chamber.The amplitude of pressure oscillation changes as the pintle moves.