A simple hydrodynamic model based on two-fluid theory, taking into account the effect of discrete particles on both the gas- and solid-phase momentum equations, was used to numerically investigate the pressure fluctua...A simple hydrodynamic model based on two-fluid theory, taking into account the effect of discrete particles on both the gas- and solid-phase momentum equations, was used to numerically investigate the pressure fluctuation characteristics in a gas-solid fluidized bed with the aid of CFX 4.4, a commercial CFD software package, by adding user-defined Fortran subroutines. Numerical simulations together with typical experimental measurements show that pressure fluctuations originate above the distributor when a gas pulse is injected into the fluidized bed. The pressure above the bubble gradually increases due to the presence of a rising bubble. When the bubble passes through the bed surface, the pressure near the bed surface gradually decreases to a lower value. Moreover, the pressure signals in the bubbling fluidized beds show obviously periodic characteristics. The major frequency of pressure fluctuations at the same vertical position is affected slightly by the operating gas velocity, and the amplitude of pressure fluctuations is related to both the operating gas velocity and the vertical height. In this study, the influence of the operating gas velocity on the pressure wave propagation velocity can be ignored, and only two peak frequencies in the power spectrum of the pressure fluctuations are observed which are associated with the bubble formation above the distributor and its eruption at the bed surface.展开更多
Pressure fluctuations contribute to the instability of separation process in air dense medium fluidized bed, which provides a high motivation for further study of underlying mechanisms. Reasons for generation and prop...Pressure fluctuations contribute to the instability of separation process in air dense medium fluidized bed, which provides a high motivation for further study of underlying mechanisms. Reasons for generation and propagation of pressure fluctuations in the air dense medium fluidized bed have been discussed.Drift rate and collision rate of particles were employed to deduce the correlation between voidage and pressure fluctuations. Simultaneously, a dynamic pressure fluctuation measuring and analysis system was established. Based on frequency domain analysis and wavelet analysis, collected signals were disassembled and analyzed. Results show gradually intensive motion of particles increases magnitudes of signal components with lower frequencies. As a result of violent particle motion, the magnitude of real pressure signal's frequency experienced an increase as air velocity increased moderately. Wavelet analysis keeps edge features of the real signal and eliminates the noise efficaciously. The frequency of denoised signal is closed to that of pressure signal identified in frequency domain analysis.展开更多
Three test models and a simulation model were constructed based on the prevailing conditions of the Taiping coalmine in order to analyze pore pressure fluctuations of an overlying aquifer during residual coal mining. ...Three test models and a simulation model were constructed based on the prevailing conditions of the Taiping coalmine in order to analyze pore pressure fluctuations of an overlying aquifer during residual coal mining. As well, the relation between pore pressure and soil stress was evaluated. The model tests show the vibrations of pore pressure and soil stress as a result of mining activities. The simulation model tells of the response characteristics of pore pressure after mining and its distribution in the sand aquifer. The comparative analysis reveals that pore pressure and soil stress vibration are activated by unexpected events occurring in mines, such as collapsing roofs. An increased pore pressure zone always lies above the wall in front or behind the working face of a mine. Both pore pressure and vertical stress result in increasing and decreasing processes during movements of the working face of a mine. The vibration of pore pressure always precedes soil stress in the same area and ends with a sharp decline. Changes in pore pressure of sand aquifer are limited to the area of stress changes. Obvious changes are largely located in a very small frame over the mining face.展开更多
Pressure fluctuations in the plasma sheath from spacecraft reentry affect radiofrequency(RF) wave propagation.The influence of these fluctuations on wave propagation and wave properties is studied using methods deri...Pressure fluctuations in the plasma sheath from spacecraft reentry affect radiofrequency(RF) wave propagation.The influence of these fluctuations on wave propagation and wave properties is studied using methods derived by synthesizing the compressible turbulent flow theory,plasma theory,and electromagnetic wave theory.We study these influences on wave propagation at GPS and Ka frequencies during typical reentry by adopting stratified modeling.We analyzed the variations in reflection and transmission properties induced by pressure fluctuations.Our results show that,at the GPS frequency,if the waves are not totally reflected then the pressure fluctuations can remarkably affect reflection,transmission,and absorption properties.In extreme situations,the fluctuations can even cause blackout.At the Ka frequency,the influences are obvious when the waves are not totally transmitted.The influences are more pronounced at the GPS frequency than at the Ka frequency.This suggests that the latter can mitigate blackout by reducing both the reflection and the absorption of waves,as well as the influences of plasma fluctuations on wave propagation.Given that communication links with the reentry vehicles are susceptible to plasma pressure fluctuations,the influences on link budgets should be taken into consideration.展开更多
An experiment was carried out for investigating pressure behavior of catalyst powders, with a Sauter mean diameter of 63.6 μm, flowing downward in a cyclone dipleg with 150 mm inner diameter and 9000 mm high. Time me...An experiment was carried out for investigating pressure behavior of catalyst powders, with a Sauter mean diameter of 63.6 μm, flowing downward in a cyclone dipleg with 150 mm inner diameter and 9000 mm high. Time mean pressure and time series of pressure fluctua- tions were measured at different axial positions in the dipleg with particle mass fluxes ranging from 50.0 to 385.0 kg m-2s t. The experimental results showed that the time mean pressure in the dipleg increased progres- sively from the top section to the bottom section. The experimental phenomena displayed that the fluidization patterns in the dipleg can be divided into two types on the whole, namely the dilute-dense coexisting falling flow and the dense conveying flow along the dipleg. In the dilute- dense coexisting falling flow, the dilute phase region was composed of a length of swirling flow below the inlet of dipleg and a dilute falling flow above the dense bed level. With increasing particle mass flux, the dilute-dense coex- isting falling flow was gradually transformed to be the dense conveying flow, and the exit pressure of the dipleg increased considerably. The pressure fluctuations were closely related to the flnidization patterns inside the dipleg. In the dilute-dense coexisting falling flow, the pressure fluctuations in the dilute flow region originated from par- ticle clusters, propagating downward as a pressure wave; however, the pressure fluctuations in the dense flow region originated from rising gas bubbles, propagating upward. When the dense conveying flow was formed in the dipleg,the pressure fluctuations originated mainly from instability of the feed and the compressed gas, propagating down- ward. The standard deviation of the pressure fluctuations indicated that the intensity of pressure fluctuations first increased and then decreased with increasing particle flux.展开更多
A low Reynolds number k-ε model is used in the numeri cal study on a circular semi-confined turbulent impinging jet . The result is c ompared with that of the standard k-ε model and a refined k-ε mode l, which re-c...A low Reynolds number k-ε model is used in the numeri cal study on a circular semi-confined turbulent impinging jet . The result is c ompared with that of the standard k-ε model and a refined k-ε mode l, which re-consi-dered the fluctuating pressure diffusion term in the dissipa tion rate equation (ε-equation) through modeling. It shows that the low Re ynolds number k-ε model and the standard k-ε model yield very poor performance, while the predicting ability of the refined k-ε model is mu ch improved , especially for the turbulent kinetic energy k. So it can be co ncluded that the poor performance of the standard k-ε model is owing to t he incorrect considering the effect of the fluctuating pressure diffusion term r ather than the use of the wall function near the wall just as presumed in the re ference.展开更多
An experimental apparatus including a dipleg and a trickle valve was established to simulate the operation of a suspended dipleg-trickle valve system of cyclone used in fluid catalytic cracking(FCC)unit.The flow regim...An experimental apparatus including a dipleg and a trickle valve was established to simulate the operation of a suspended dipleg-trickle valve system of cyclone used in fluid catalytic cracking(FCC)unit.The flow regimes in the dipleg and the discharge modes in the trickle valve were studied by combining the observation of experimental phenomena with the analysis of transient pressure fluctuation.The results show that the flow regimes in the dipleg have two types-the dilute–dense phase coexisting falling flow and the dilute falling flow.Correspondingly,the trickle valve also has two discharge modes-the intermittent periodic dumping discharge and the continuous trickling discharge.The power spectrum density of pressure fluctuation displays that the gas–solids flow in the dipleg-trickle valve system is characterized by a low-frequency pulsation.The coherence coefficient explains the origin and propagation of pressure fluctuation in the system.Eventually,a map describing the flow regimes and discharge modes related to the operation parameters was proposed,which can provide a helpful guidance for the operation of cyclone dipleg-trickle valve system in FCC unit.展开更多
Exhaust resonance effect on the 2-stroke engine aspiration is investigated via one-dimensional simulation on GT-Power.Result shows that exhaust resonance is established when the number of oscillation periods per engin...Exhaust resonance effect on the 2-stroke engine aspiration is investigated via one-dimensional simulation on GT-Power.Result shows that exhaust resonance is established when the number of oscillation periods per engine cycle derived from the engine speed and exhaust length is an integer.Exhaust resonance may raise or lower the trapping ratio,and the specific effect depends on the value of the number of oscillation periods per engine cycle.There is a liner regression relationship between the trapping ratio and average after back pressure.The primary way to improve the trapping ratio with the exhaust resonance is to increase the average after back pressure.The optimum exhaust resonance state is the one that suits the port timings so that the peak of exhaust pressure lies within the after charging period,raising the average after back pressure.For the case where the exhaust duration is 184°CA and the scavenge duration is 111°CA,the optimum number of oscillation periods per engine cycle is 3.展开更多
基金support from National Basic Research Program of China(No.2009CB219801)National Natural Science Foundation of China(No.20976191)+1 种基金International Cooperative Program of Guizhou Province([2009]700110)Program for New Century Excellent Talents in University(NCET-09-0342)
文摘A simple hydrodynamic model based on two-fluid theory, taking into account the effect of discrete particles on both the gas- and solid-phase momentum equations, was used to numerically investigate the pressure fluctuation characteristics in a gas-solid fluidized bed with the aid of CFX 4.4, a commercial CFD software package, by adding user-defined Fortran subroutines. Numerical simulations together with typical experimental measurements show that pressure fluctuations originate above the distributor when a gas pulse is injected into the fluidized bed. The pressure above the bubble gradually increases due to the presence of a rising bubble. When the bubble passes through the bed surface, the pressure near the bed surface gradually decreases to a lower value. Moreover, the pressure signals in the bubbling fluidized beds show obviously periodic characteristics. The major frequency of pressure fluctuations at the same vertical position is affected slightly by the operating gas velocity, and the amplitude of pressure fluctuations is related to both the operating gas velocity and the vertical height. In this study, the influence of the operating gas velocity on the pressure wave propagation velocity can be ignored, and only two peak frequencies in the power spectrum of the pressure fluctuations are observed which are associated with the bubble formation above the distributor and its eruption at the bed surface.
基金support by the Natural Science Foundation of Jiangsu Province of China (No. BK20160266)the National Natural Science Foundation of China (Nos. 51704287 and U1508210)the Priority Academic Program Development of Jiangsu Higher Education Institutions of China
文摘Pressure fluctuations contribute to the instability of separation process in air dense medium fluidized bed, which provides a high motivation for further study of underlying mechanisms. Reasons for generation and propagation of pressure fluctuations in the air dense medium fluidized bed have been discussed.Drift rate and collision rate of particles were employed to deduce the correlation between voidage and pressure fluctuations. Simultaneously, a dynamic pressure fluctuation measuring and analysis system was established. Based on frequency domain analysis and wavelet analysis, collected signals were disassembled and analyzed. Results show gradually intensive motion of particles increases magnitudes of signal components with lower frequencies. As a result of violent particle motion, the magnitude of real pressure signal's frequency experienced an increase as air velocity increased moderately. Wavelet analysis keeps edge features of the real signal and eliminates the noise efficaciously. The frequency of denoised signal is closed to that of pressure signal identified in frequency domain analysis.
基金Project supported by Qing Lan Project of Jiangsu, China
文摘Three test models and a simulation model were constructed based on the prevailing conditions of the Taiping coalmine in order to analyze pore pressure fluctuations of an overlying aquifer during residual coal mining. As well, the relation between pore pressure and soil stress was evaluated. The model tests show the vibrations of pore pressure and soil stress as a result of mining activities. The simulation model tells of the response characteristics of pore pressure after mining and its distribution in the sand aquifer. The comparative analysis reveals that pore pressure and soil stress vibration are activated by unexpected events occurring in mines, such as collapsing roofs. An increased pore pressure zone always lies above the wall in front or behind the working face of a mine. Both pore pressure and vertical stress result in increasing and decreasing processes during movements of the working face of a mine. The vibration of pore pressure always precedes soil stress in the same area and ends with a sharp decline. Changes in pore pressure of sand aquifer are limited to the area of stress changes. Obvious changes are largely located in a very small frame over the mining face.
基金supported by the National Basic Research Program of China(No.2014CB340205)National Natural Science Foundation of China(No.61301173)
文摘Pressure fluctuations in the plasma sheath from spacecraft reentry affect radiofrequency(RF) wave propagation.The influence of these fluctuations on wave propagation and wave properties is studied using methods derived by synthesizing the compressible turbulent flow theory,plasma theory,and electromagnetic wave theory.We study these influences on wave propagation at GPS and Ka frequencies during typical reentry by adopting stratified modeling.We analyzed the variations in reflection and transmission properties induced by pressure fluctuations.Our results show that,at the GPS frequency,if the waves are not totally reflected then the pressure fluctuations can remarkably affect reflection,transmission,and absorption properties.In extreme situations,the fluctuations can even cause blackout.At the Ka frequency,the influences are obvious when the waves are not totally transmitted.The influences are more pronounced at the GPS frequency than at the Ka frequency.This suggests that the latter can mitigate blackout by reducing both the reflection and the absorption of waves,as well as the influences of plasma fluctuations on wave propagation.Given that communication links with the reentry vehicles are susceptible to plasma pressure fluctuations,the influences on link budgets should be taken into consideration.
基金the support from the National Natural Science Foundation of China(Grant No.21176250.21566038)by the Science Foundation of China University of Petroleum,Beijing(No.2462015YQ0301)
文摘An experiment was carried out for investigating pressure behavior of catalyst powders, with a Sauter mean diameter of 63.6 μm, flowing downward in a cyclone dipleg with 150 mm inner diameter and 9000 mm high. Time mean pressure and time series of pressure fluctua- tions were measured at different axial positions in the dipleg with particle mass fluxes ranging from 50.0 to 385.0 kg m-2s t. The experimental results showed that the time mean pressure in the dipleg increased progres- sively from the top section to the bottom section. The experimental phenomena displayed that the fluidization patterns in the dipleg can be divided into two types on the whole, namely the dilute-dense coexisting falling flow and the dense conveying flow along the dipleg. In the dilute- dense coexisting falling flow, the dilute phase region was composed of a length of swirling flow below the inlet of dipleg and a dilute falling flow above the dense bed level. With increasing particle mass flux, the dilute-dense coex- isting falling flow was gradually transformed to be the dense conveying flow, and the exit pressure of the dipleg increased considerably. The pressure fluctuations were closely related to the flnidization patterns inside the dipleg. In the dilute-dense coexisting falling flow, the pressure fluctuations in the dilute flow region originated from par- ticle clusters, propagating downward as a pressure wave; however, the pressure fluctuations in the dense flow region originated from rising gas bubbles, propagating upward. When the dense conveying flow was formed in the dipleg,the pressure fluctuations originated mainly from instability of the feed and the compressed gas, propagating down- ward. The standard deviation of the pressure fluctuations indicated that the intensity of pressure fluctuations first increased and then decreased with increasing particle flux.
文摘A low Reynolds number k-ε model is used in the numeri cal study on a circular semi-confined turbulent impinging jet . The result is c ompared with that of the standard k-ε model and a refined k-ε mode l, which re-consi-dered the fluctuating pressure diffusion term in the dissipa tion rate equation (ε-equation) through modeling. It shows that the low Re ynolds number k-ε model and the standard k-ε model yield very poor performance, while the predicting ability of the refined k-ε model is mu ch improved , especially for the turbulent kinetic energy k. So it can be co ncluded that the poor performance of the standard k-ε model is owing to t he incorrect considering the effect of the fluctuating pressure diffusion term r ather than the use of the wall function near the wall just as presumed in the re ference.
基金the supports by the National Natural Science Foundation of China(Grant Nos.21776305,21978322)the China Petrochemical Joint Foundation(Grant No.U1862202)
文摘An experimental apparatus including a dipleg and a trickle valve was established to simulate the operation of a suspended dipleg-trickle valve system of cyclone used in fluid catalytic cracking(FCC)unit.The flow regimes in the dipleg and the discharge modes in the trickle valve were studied by combining the observation of experimental phenomena with the analysis of transient pressure fluctuation.The results show that the flow regimes in the dipleg have two types-the dilute–dense phase coexisting falling flow and the dilute falling flow.Correspondingly,the trickle valve also has two discharge modes-the intermittent periodic dumping discharge and the continuous trickling discharge.The power spectrum density of pressure fluctuation displays that the gas–solids flow in the dipleg-trickle valve system is characterized by a low-frequency pulsation.The coherence coefficient explains the origin and propagation of pressure fluctuation in the system.Eventually,a map describing the flow regimes and discharge modes related to the operation parameters was proposed,which can provide a helpful guidance for the operation of cyclone dipleg-trickle valve system in FCC unit.
文摘Exhaust resonance effect on the 2-stroke engine aspiration is investigated via one-dimensional simulation on GT-Power.Result shows that exhaust resonance is established when the number of oscillation periods per engine cycle derived from the engine speed and exhaust length is an integer.Exhaust resonance may raise or lower the trapping ratio,and the specific effect depends on the value of the number of oscillation periods per engine cycle.There is a liner regression relationship between the trapping ratio and average after back pressure.The primary way to improve the trapping ratio with the exhaust resonance is to increase the average after back pressure.The optimum exhaust resonance state is the one that suits the port timings so that the peak of exhaust pressure lies within the after charging period,raising the average after back pressure.For the case where the exhaust duration is 184°CA and the scavenge duration is 111°CA,the optimum number of oscillation periods per engine cycle is 3.