Predictive control has recently received much attention from researchers. However a challenging problem to be solved is how to tune the parameters of the predictive controller. So far, only few guidelines related to t...Predictive control has recently received much attention from researchers. However a challenging problem to be solved is how to tune the parameters of the predictive controller. So far, only few guidelines related to tuning of the parameters of predictive controllers have been provided in literature. In practice, these parameters are generally off-line determined by the designers' experience. From the point of view of process control, it is difficult to find out the optimal parameters for the control system based on a single quadratic performance index, which is used in the standard predictive control algorithm. The fuzzy decision-making function is investigated in this paper. Firstly, M control actions are achieved by unconstrained predictive control algorithm, and fuzzy goals and fuzzy constraints are then calculated and the global satisfaction degree is obtained by fuzzy inference. Moreover, the weighting coefficient λ in the cost function is tuned using simulation optimization according to the fuzzy criteria.展开更多
This paper investigates the use of fuzzy decision making in predictive control. The use of fuzzy goals and fuzzy constraints in predictive control allows for a more flexible aggregation of the control objectives than ...This paper investigates the use of fuzzy decision making in predictive control. The use of fuzzy goals and fuzzy constraints in predictive control allows for a more flexible aggregation of the control objectives than the usual weighting sum of squared errors. Compared to the standard quadratic objective function, with the fuzzy decision-making approach, the designer has more freedom in specifying the desired process behavior.展开更多
文摘Predictive control has recently received much attention from researchers. However a challenging problem to be solved is how to tune the parameters of the predictive controller. So far, only few guidelines related to tuning of the parameters of predictive controllers have been provided in literature. In practice, these parameters are generally off-line determined by the designers' experience. From the point of view of process control, it is difficult to find out the optimal parameters for the control system based on a single quadratic performance index, which is used in the standard predictive control algorithm. The fuzzy decision-making function is investigated in this paper. Firstly, M control actions are achieved by unconstrained predictive control algorithm, and fuzzy goals and fuzzy constraints are then calculated and the global satisfaction degree is obtained by fuzzy inference. Moreover, the weighting coefficient λ in the cost function is tuned using simulation optimization according to the fuzzy criteria.
基金This project was supported by the National Nature Science Foundation of China (No. 60074004) andHebei Provincial Natural Scien
文摘This paper investigates the use of fuzzy decision making in predictive control. The use of fuzzy goals and fuzzy constraints in predictive control allows for a more flexible aggregation of the control objectives than the usual weighting sum of squared errors. Compared to the standard quadratic objective function, with the fuzzy decision-making approach, the designer has more freedom in specifying the desired process behavior.