Buried interfacial voids have always been a notorious phenomenon observed in the fabrication of lead perovskite films. The existence of interfacial voids at the buried interface will capture the carrier, suppress carr...Buried interfacial voids have always been a notorious phenomenon observed in the fabrication of lead perovskite films. The existence of interfacial voids at the buried interface will capture the carrier, suppress carrier transport efficiencies, and affect the stability of photovoltaic devices. However, the impact of these buried interfacial voids on tin perovskites, a promising avenue for advancing lead-free photovoltaics, has been largely overlooked. Here, we utilize an innovative weakly polar solvent pretreatment strategy(WPSPS) to mitigate buried interfacial voids of tin perovskites. Our investigation reveals the presence of numerous voids in tin perovskites during annealing, attributed to trapped dimethyl sulfoxide(DMSO) used in film formation. The WPSPS method facilitates accelerated DMSO evaporation, effectively reducing residual DMSO. Interestingly, the WPSPS shifts the energy level of PEDOT:PSS downward, making it more aligned with the perovskite. This alignment enhances the efficiency of charge carrier transport. As the result, tin perovskite film quality is significantly improved,achieving a maximum power conversion efficiency approaching 12% with only an 8.3% efficiency loss after 1700 h of stability tests, which compares well with the state-of-the-art stability of tin-based perovskite solar cells.展开更多
Detailed experimental investigations were carried out for microwave pre-treatment of high ash Indian coal at high power level(900 W) in microwave oven. The microwave exposure times were fixed at60 s and 120 s. A rheol...Detailed experimental investigations were carried out for microwave pre-treatment of high ash Indian coal at high power level(900 W) in microwave oven. The microwave exposure times were fixed at60 s and 120 s. A rheology characteristic for microwave pre-treatment of coal-water slurry(CWS) was performed in an online Bohlin viscometer. The non-Newtonian character of the slurry follows the rheological model of Ostwald de Waele. The values of n and k vary from 0.31 to 0.64 and 0.19 to 0.81 Pa·sn,respectively. This paper presents an artificial neural network(ANN) model to predict the effects of operational parameters on apparent viscosity of CWS. A 4-2-1 topology with Levenberg-Marquardt training algorithm(trainlm) was selected as the controlled ANN. Mean squared error(MSE) of 0.002 and coefficient of multiple determinations(R^2) of 0.99 were obtained for the outperforming model. The promising values of correlation coefficient further confirm the robustness and satisfactory performance of the proposed ANN model.展开更多
In this work, different flotation–preoxidation–cyanidation methods are considered for treating a lowgrade refractory gold ore. On the one hand, the results of selective flotation show that 22% and 31.1%of total Sb a...In this work, different flotation–preoxidation–cyanidation methods are considered for treating a lowgrade refractory gold ore. On the one hand, the results of selective flotation show that 22% and 31.1%of total Sb and As, respectively, remained in the final tailings and only about 28% of the total Au remained for further cyanidation processes. On the other hand, in bulk method of flotation the maximum Au recovery of 90.6% achieved after 60 min of flotation at the grind size with K80 of 146 micron. In addition, the bulk flotation method resulted in the concentrate with low concentrations of Sb and As elements. To improve the recovery of low-grade refractory gold ores, flotation should be followed by roasting, biological, or pressure oxidation processes so that the gold could be liberated prior to cyanidation processes. It is also found that the pressure oxidation pre-treatment of the concentrates prior to cyanidation may yield high gold recoveries of over than 83%. In these processes, recoveries are controlled by the temperature and the oxygen partial pressure in the solvent. However, by utilizing the bio-oxidation technique, the oxidation of sulfur to sulfate cannot be completed and, consequently, the gold recovery may be limited to only 72.2%.展开更多
Transparent electrode based on silver nanowires(Ag NWs) emerges as an outstanding alternative of indium tin oxide film especially for flexible electronics. However, the conductivity of Ag NWs transparent electrode is ...Transparent electrode based on silver nanowires(Ag NWs) emerges as an outstanding alternative of indium tin oxide film especially for flexible electronics. However, the conductivity of Ag NWs transparent electrode is still dramatically limited by the contact resistance between nanowires at high transmittance. Polyvinylpyrrolidone(PVP) layer adsorbed on the nanowire surface acts as an electrically insulating barrier at wire–wire junctions, and some devastating post-treatment methods are proposed to reduce or eliminate PVP layer, which usually limit the application of the substrates susceptible to heat or pressure and burden the fabrication with high-cost, time-consuming, or inefficient processes. In this work, a simple and rapid pre-treatment washing method was proposed to reduce the thickness of PVP layer from 13.19 to0.96 nm and improve the contact between wires. Ag NW electrodes with sheet resistances of 15.6 and 204 X sq-1have been achieved at transmittances of 90 and 97.5 %, respectively. This method avoided any post-treatments and popularized the application of high-performance Ag NW transparent electrode on more substrates. The improved Ag NWs were successfully employed in a capacitive pressure sensor with high transparency, sensitivity, and reproducibility.展开更多
The physic-chemical properties of LaFe0.95Pd0.05O3 perovskites were strongly dependent on the temperature of calcination. Most of the organic substances and inorganic impurities were readily removed at 723 K but singl...The physic-chemical properties of LaFe0.95Pd0.05O3 perovskites were strongly dependent on the temperature of calcination. Most of the organic substances and inorganic impurities were readily removed at 723 K but single-phase and well crystallized perovskite structure was formed at 873 K. With further raising the calcination temperature, the crystallite size of LaFe0.95Pd0.05O3 increased considerably. The LaFe0.95Pd0.05O3 sample that calcined at 1073 K showed only comparable activity as the reference LaFeO3 catalyst, in particular below 923 K, but pre-treatment with the reaction gas at 1223 K resulted in significantly enhanced activity due to the generation of active PdO species on the surface. The hysteresis feature upon heating-cooling cycle further confirmed the strong interaction between Pd and LaFeO3 in the perovskite structure.展开更多
Because posttraumatic stress disorder(PTSD) is a highly debilitating condition, prevention is an important research topic. This article reviews possible prevention approaches that involve the administration of drugs b...Because posttraumatic stress disorder(PTSD) is a highly debilitating condition, prevention is an important research topic. This article reviews possible prevention approaches that involve the administration of drugs before the traumatic event takes place. The considered approaches include drugs that address the sympathetic nervous system, drugs interfere with the hypothalamic-pituitary-adrenal(HPA) axis, narcotics and other psychoactive drugs, as well as modulators of protein synthesis. Furthermore, some thoughts on potential ethical implications of the use of drugs for the primary prevention of PTDS are presented. While there are many barriers to overcome in this field of study, this paper concludes with a call for additional research, as there are currently no approaches that are well-suited for regular daily use.展开更多
Hierarchically porous FAU monoliths were synthesized via the gel pre-aging route using seed gel as directing agent andα-Al2O3 as monolithic carrier.The as-synthesized samples were characterized by means of the Fourie...Hierarchically porous FAU monoliths were synthesized via the gel pre-aging route using seed gel as directing agent andα-Al2O3 as monolithic carrier.The as-synthesized samples were characterized by means of the Fourier transform infrared spectroscopy(FT-IR),X-ray powder diffraction(XRD),scanning electron microscopy(SEM),and N2 adsorption techniques.The effects of seed gel,gel pre-treatment,and gel pre-aging step were determined,while the possible mechanism for formation of alumina composites via different synthesis processes were discussed.The results showed that the crystal size,the shape,and the loading of the supported FAU could be readily tuned by varying the composition of the crystallization gel without notably changing the structure ofα-Al2O3.The proposed seed gel pre-treating and gel pre-aging route are simple,reproducible,and practically easy to integrate triple porous structures into large-dimension monoliths,which are proved to be very effective in depositing pure FAU crystals on theα-Al2O3 skeleton surface and strengthening the interfacial interaction between them.Moreover,it may provide inspiration to the synthesis of other hierarchical zeolites.展开更多
基金National Natural Science Foundation of China (62274094, 62175117)Natural Science Foundation of Jiangsu Higher Education Institutions (22KJB510011)+1 种基金Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University (KJS2260)Huali Talents Program of Nanjing University of Posts and Telecommunications。
文摘Buried interfacial voids have always been a notorious phenomenon observed in the fabrication of lead perovskite films. The existence of interfacial voids at the buried interface will capture the carrier, suppress carrier transport efficiencies, and affect the stability of photovoltaic devices. However, the impact of these buried interfacial voids on tin perovskites, a promising avenue for advancing lead-free photovoltaics, has been largely overlooked. Here, we utilize an innovative weakly polar solvent pretreatment strategy(WPSPS) to mitigate buried interfacial voids of tin perovskites. Our investigation reveals the presence of numerous voids in tin perovskites during annealing, attributed to trapped dimethyl sulfoxide(DMSO) used in film formation. The WPSPS method facilitates accelerated DMSO evaporation, effectively reducing residual DMSO. Interestingly, the WPSPS shifts the energy level of PEDOT:PSS downward, making it more aligned with the perovskite. This alignment enhances the efficiency of charge carrier transport. As the result, tin perovskite film quality is significantly improved,achieving a maximum power conversion efficiency approaching 12% with only an 8.3% efficiency loss after 1700 h of stability tests, which compares well with the state-of-the-art stability of tin-based perovskite solar cells.
基金the sponsor CSIR (Council of Scientific and Industrial Research), New Delhi for their financial grant to carry out the present research work
文摘Detailed experimental investigations were carried out for microwave pre-treatment of high ash Indian coal at high power level(900 W) in microwave oven. The microwave exposure times were fixed at60 s and 120 s. A rheology characteristic for microwave pre-treatment of coal-water slurry(CWS) was performed in an online Bohlin viscometer. The non-Newtonian character of the slurry follows the rheological model of Ostwald de Waele. The values of n and k vary from 0.31 to 0.64 and 0.19 to 0.81 Pa·sn,respectively. This paper presents an artificial neural network(ANN) model to predict the effects of operational parameters on apparent viscosity of CWS. A 4-2-1 topology with Levenberg-Marquardt training algorithm(trainlm) was selected as the controlled ANN. Mean squared error(MSE) of 0.002 and coefficient of multiple determinations(R^2) of 0.99 were obtained for the outperforming model. The promising values of correlation coefficient further confirm the robustness and satisfactory performance of the proposed ANN model.
文摘In this work, different flotation–preoxidation–cyanidation methods are considered for treating a lowgrade refractory gold ore. On the one hand, the results of selective flotation show that 22% and 31.1%of total Sb and As, respectively, remained in the final tailings and only about 28% of the total Au remained for further cyanidation processes. On the other hand, in bulk method of flotation the maximum Au recovery of 90.6% achieved after 60 min of flotation at the grind size with K80 of 146 micron. In addition, the bulk flotation method resulted in the concentrate with low concentrations of Sb and As elements. To improve the recovery of low-grade refractory gold ores, flotation should be followed by roasting, biological, or pressure oxidation processes so that the gold could be liberated prior to cyanidation processes. It is also found that the pressure oxidation pre-treatment of the concentrates prior to cyanidation may yield high gold recoveries of over than 83%. In these processes, recoveries are controlled by the temperature and the oxygen partial pressure in the solvent. However, by utilizing the bio-oxidation technique, the oxidation of sulfur to sulfate cannot be completed and, consequently, the gold recovery may be limited to only 72.2%.
基金partly supported by Showa Denko Co. Ltd, Grant-in-Aid for Scientific Research (Kaken S, 24226017)COI Stream Projectfinancial support from China Scholarship Council
文摘Transparent electrode based on silver nanowires(Ag NWs) emerges as an outstanding alternative of indium tin oxide film especially for flexible electronics. However, the conductivity of Ag NWs transparent electrode is still dramatically limited by the contact resistance between nanowires at high transmittance. Polyvinylpyrrolidone(PVP) layer adsorbed on the nanowire surface acts as an electrically insulating barrier at wire–wire junctions, and some devastating post-treatment methods are proposed to reduce or eliminate PVP layer, which usually limit the application of the substrates susceptible to heat or pressure and burden the fabrication with high-cost, time-consuming, or inefficient processes. In this work, a simple and rapid pre-treatment washing method was proposed to reduce the thickness of PVP layer from 13.19 to0.96 nm and improve the contact between wires. Ag NW electrodes with sheet resistances of 15.6 and 204 X sq-1have been achieved at transmittances of 90 and 97.5 %, respectively. This method avoided any post-treatments and popularized the application of high-performance Ag NW transparent electrode on more substrates. The improved Ag NWs were successfully employed in a capacitive pressure sensor with high transparency, sensitivity, and reproducibility.
文摘The physic-chemical properties of LaFe0.95Pd0.05O3 perovskites were strongly dependent on the temperature of calcination. Most of the organic substances and inorganic impurities were readily removed at 723 K but single-phase and well crystallized perovskite structure was formed at 873 K. With further raising the calcination temperature, the crystallite size of LaFe0.95Pd0.05O3 increased considerably. The LaFe0.95Pd0.05O3 sample that calcined at 1073 K showed only comparable activity as the reference LaFeO3 catalyst, in particular below 923 K, but pre-treatment with the reaction gas at 1223 K resulted in significantly enhanced activity due to the generation of active PdO species on the surface. The hysteresis feature upon heating-cooling cycle further confirmed the strong interaction between Pd and LaFeO3 in the perovskite structure.
文摘Because posttraumatic stress disorder(PTSD) is a highly debilitating condition, prevention is an important research topic. This article reviews possible prevention approaches that involve the administration of drugs before the traumatic event takes place. The considered approaches include drugs that address the sympathetic nervous system, drugs interfere with the hypothalamic-pituitary-adrenal(HPA) axis, narcotics and other psychoactive drugs, as well as modulators of protein synthesis. Furthermore, some thoughts on potential ethical implications of the use of drugs for the primary prevention of PTDS are presented. While there are many barriers to overcome in this field of study, this paper concludes with a call for additional research, as there are currently no approaches that are well-suited for regular daily use.
基金This work was supported by the National Natural Science Foundation of China(No.61673004 and No.11472048)the Fundamental Research Funds for the Central Universities of China(XK1802-4).
文摘Hierarchically porous FAU monoliths were synthesized via the gel pre-aging route using seed gel as directing agent andα-Al2O3 as monolithic carrier.The as-synthesized samples were characterized by means of the Fourier transform infrared spectroscopy(FT-IR),X-ray powder diffraction(XRD),scanning electron microscopy(SEM),and N2 adsorption techniques.The effects of seed gel,gel pre-treatment,and gel pre-aging step were determined,while the possible mechanism for formation of alumina composites via different synthesis processes were discussed.The results showed that the crystal size,the shape,and the loading of the supported FAU could be readily tuned by varying the composition of the crystallization gel without notably changing the structure ofα-Al2O3.The proposed seed gel pre-treating and gel pre-aging route are simple,reproducible,and practically easy to integrate triple porous structures into large-dimension monoliths,which are proved to be very effective in depositing pure FAU crystals on theα-Al2O3 skeleton surface and strengthening the interfacial interaction between them.Moreover,it may provide inspiration to the synthesis of other hierarchical zeolites.