期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
深层语义特征增强的ReLM中文拼写纠错模型
1
作者 张伟 牛家祥 +1 位作者 马继超 沈琼霞 《计算机应用》 北大核心 2025年第8期2484-2490,共7页
ReLM(Rephrasing Language Model)是当前性能领先的中文拼写纠错(CSC)模型。针对它在复杂语义场景中存在特征表达不足的问题,提出深层语义特征增强的ReLM——FeReLM(Feature-enhanced Rephrasing Language Model)。该模型利用深度可分... ReLM(Rephrasing Language Model)是当前性能领先的中文拼写纠错(CSC)模型。针对它在复杂语义场景中存在特征表达不足的问题,提出深层语义特征增强的ReLM——FeReLM(Feature-enhanced Rephrasing Language Model)。该模型利用深度可分离卷积(DSC)技术融合特征提取模型BGE(BAAI General Embeddings)生成的深层语义特征与ReLM生成的整体特征,从而有效提升模型对复杂上下文的解析力和拼写错误的识别纠正精度。首先,在Wang271K数据集上训练FeReLM,使模型持续学习句子中的深层语义和复杂表达;其次,迁移训练好的权重,从而将模型学习到的知识应用于新的数据集并进行微调。实验结果表明,在ECSpell和MCSC数据集上与ReLM、MCRSpell(Metric learning of Correct Representation for Chinese Spelling Correction)和RSpell(Retrieval-augmented Framework for Domain Adaptive Chinese Spelling Check)等模型相比,FeReLM的精确率、召回率、F1分数等关键指标的提升幅度可达0.6~28.7个百分点。此外,通过消融实验验证了所提方法的有效性。 展开更多
关键词 自然语言处理 特征增强 中文拼写纠错 语义融合 文本纠错 预训练语言模型
在线阅读 下载PDF
基于联邦学习的BERT模型高效训练框架
2
作者 王鑫澳 陈珂 +2 位作者 寿黎但 骆歆远 陈刚 《软件学报》 北大核心 2025年第9期4110-4133,共24页
高质量的训练数据对于预训练语言模型(PLM)至关重要,但许多专业领域的数据因隐私问题而无法集中收集用于模型训练.借助联邦学习,可以在保护数据隐私的前提下完成模型训练.然而,联邦学习的客户端通常资源有限,无法完成预训练语言模型的训... 高质量的训练数据对于预训练语言模型(PLM)至关重要,但许多专业领域的数据因隐私问题而无法集中收集用于模型训练.借助联邦学习,可以在保护数据隐私的前提下完成模型训练.然而,联邦学习的客户端通常资源有限,无法完成预训练语言模型的训练.针对这一问题进行深入研究.首先,明确定义在资源有限前提下完成模型训练的问题,通过调整计算开销与通信开销来优化模型的训练效果.其次,介绍一种适用于联邦学习环境下的BERT模型高效训练框架——FedBT.该框架旨在实现BERT模型在联邦学习客户端上的训练,涵盖进一步预训练和下游任务微调两种场景.FedBT适应不同的应用场景,在客户端针对BERT模型的关键参数进行训练,并仅将更新的参数上传至服务器进行聚合.这种方法显著减少模型训练过程中的计算和通信成本.最后,在多个专业领域的数据集上进行充分的实验对比,进一步预训练场景下,FedBT框架可以降低客户端的训练开销与通信开销至原来的34.31%和7.04%,下游任务微调场景下,FedBT框架可以降低客户端的训练开销与通信开销至原来的48.26%和20.19%,并且均实现同传统联邦学习训练完整模型接近的精确度. 展开更多
关键词 联邦学习 预训练语言模型 进一步预训练 下游任务微调
在线阅读 下载PDF
基于提示学习和全局指针网络的中文古籍实体关系联合抽取方法 被引量:2
3
作者 李斌 林民 +3 位作者 斯日古楞 高颖杰 王玉荣 张树钧 《计算机应用》 北大核心 2025年第1期75-81,共7页
基于“预训练+微调”范式的实体关系联合抽取方法依赖大规模标注数据,在数据标注难度大、成本高的中文古籍小样本场景下微调效率低,抽取性能不佳;中文古籍中普遍存在实体嵌套和关系重叠的问题,限制了实体关系联合抽取的效果;管道式抽取... 基于“预训练+微调”范式的实体关系联合抽取方法依赖大规模标注数据,在数据标注难度大、成本高的中文古籍小样本场景下微调效率低,抽取性能不佳;中文古籍中普遍存在实体嵌套和关系重叠的问题,限制了实体关系联合抽取的效果;管道式抽取方法存在错误传播问题,影响抽取效果。针对以上问题,提出一种基于提示学习和全局指针网络的中文古籍实体关系联合抽取方法。首先,利用区间抽取式阅读理解的提示学习方法对预训练语言模型(PLM)注入领域知识以统一预训练和微调的优化目标,并对输入句子进行编码表示;其次,使用全局指针网络分别对主、客实体边界和不同关系下的主、客实体边界进行预测和联合解码,对齐成实体关系三元组,并构建了PTBG(Prompt Tuned BERT with Global pointer)模型,解决实体嵌套和关系重叠问题,同时避免了管道式解码的错误传播问题;最后,在上述工作基础上分析了不同提示模板对抽取性能的影响。在《史记》数据集上进行实验的结果表明,相较于注入领域知识前后的OneRel模型,PTBG模型所取得的F1值分别提升了1.64和1.97个百分点。可见,PTBG模型能更好地对中文古籍实体关系进行联合抽取,为低资源的小样本深度学习场景提供了新的研究思路与方法。 展开更多
关键词 实体关系联合抽取 全局指针网络 提示学习 预训练语言模型 中文古籍
在线阅读 下载PDF
基于工作流技术柔性PLM系统的设计与分析 被引量:1
4
作者 曹宝香 夏小娜 《计算机工程》 CAS CSCD 北大核心 2007年第7期267-268,271,共3页
在分析柔性软件理论的基础上,对软件的柔性体系结构进行了探讨,结合软件开发中的体会,构建了基于工作流技术的产品生命周期管理系统,借助面向对象的动态建模机制――UML活动图与状态图,以系统流程实现中的产品订单处理工作流为例,对系... 在分析柔性软件理论的基础上,对软件的柔性体系结构进行了探讨,结合软件开发中的体会,构建了基于工作流技术的产品生命周期管理系统,借助面向对象的动态建模机制――UML活动图与状态图,以系统流程实现中的产品订单处理工作流为例,对系统进行模型化描述与分析。 展开更多
关键词 产品生命周期管理 柔性软件 工作流 统一建模语言
在线阅读 下载PDF
分布外检测中训练与测试的内外数据整合
5
作者 王祉苑 彭涛 杨捷 《计算机应用》 北大核心 2025年第8期2497-2506,共10页
分布外(OOD)检测旨在识别偏离训练数据分布的外来样本,以规避模型对异常情况的错误预测。由于真实OOD数据的不可知性,目前基于预训练语言模型(PLM)的OOD检测方法尚未同时评估OOD分布在训练与测试阶段对检测性能的影响。针对这一问题,提... 分布外(OOD)检测旨在识别偏离训练数据分布的外来样本,以规避模型对异常情况的错误预测。由于真实OOD数据的不可知性,目前基于预训练语言模型(PLM)的OOD检测方法尚未同时评估OOD分布在训练与测试阶段对检测性能的影响。针对这一问题,提出一种训练与测试阶段整合内外数据的OOD文本检测框架(IEDOD-TT)。该框架分阶段采用不同的数据整合策略:在训练阶段通过掩码语言模型(MLM)在原始训练集上生成伪OOD数据集,并引入对比学习增强内外数据之间的特征差异;在测试阶段通过结合内外数据分布的密度估计设计一个综合的OOD检测评分指标。实验结果表明,所提方法在CLINC150、NEWS-TOP5、SST2和YELP这4个数据集上的综合表现与最优基线方法 doSCL-cMaha相比,平均接受者操作特征曲线下面积(AUROC)提升了1.56个百分点,平均95%真阳性率下的假阳性率(FPR95)降低了2.83个百分点;与所提方法的最佳变体IS/IEDOD-TT(ID Single/IEDOD-TT)相比,所提方法在这4个数据集上的平均AUROC提升了1.61个百分点,平均FPR95降低了2.71个百分点。实验结果证明了IEDOD-TT在处理文本分类任务时针对不同数据分布偏移的有效性,并验证了综合考虑内外数据分布的额外性能提升。 展开更多
关键词 分布外检测 预训练语言模型 内外数据整合 对比学习 文本分类
在线阅读 下载PDF
基于提示学习和超球原型的小样本ICD自动编码方法 被引量:1
6
作者 徐春 吉双焱 马志龙 《计算机应用研究》 CSCD 北大核心 2024年第9期2670-2677,共8页
针对国际疾病分类(ICD)自动编码方法的长文本处理、编码的层次结构以及长尾分布等导致的模型泛化能力弱的问题,提出一种充分利用医学预训练语言模型的基于提示学习和超球原型的小样本ICD自动编码方法(hypersphere prototypical with pro... 针对国际疾病分类(ICD)自动编码方法的长文本处理、编码的层次结构以及长尾分布等导致的模型泛化能力弱的问题,提出一种充分利用医学预训练语言模型的基于提示学习和超球原型的小样本ICD自动编码方法(hypersphere prototypical with prompt learning,PromptHP)。首先,将编码描述与临床文本融合进提示学习模型中的提示模板,使得模型能够更加深入地理解临床文本;然后,充分利用预训练语言模型的先验知识进行初始预测;接着,在预训练语言模型输出表示的基础上引入超球原型进行类别建模和度量分类,并在医学数据集上微调网络,充分纳入数据知识,提高模型在小样本ICD编码分配任务上的性能;最后,对以上两部分预测结果集成加权获得最终编码预测结果。在公开医学数据集MIMIC-Ⅲ上的实验结果表明,该模型优于最先进的基线方法,PromptHP将小样本编码的macro-AUC、micro-AUC、macro-F_(1)和micro-F_(1)分别提高了1.77%、1.54%、14.22%、15.01%。实验结果验证了该模型在小样本编码分类任务中的有效性。 展开更多
关键词 自动ICD编码 小样本学习 提示学习 超球原型 预训练语言模型
在线阅读 下载PDF
引入知识增强和对比学习的知识图谱补全
7
作者 刘娟 段友祥 +1 位作者 陆誉翕 张鲁 《计算机工程》 CAS CSCD 北大核心 2024年第7期112-122,共11页
知识图谱补全是提高知识图谱质量的重要手段,主要分为基于结构和基于描述的方法。基于结构的补全方法对图谱中常见的长尾实体推理性能表现不佳,基于描述的补全方法在描述信息利用和负样本信息学习方面存在不足。针对上述问题,提出基于... 知识图谱补全是提高知识图谱质量的重要手段,主要分为基于结构和基于描述的方法。基于结构的补全方法对图谱中常见的长尾实体推理性能表现不佳,基于描述的补全方法在描述信息利用和负样本信息学习方面存在不足。针对上述问题,提出基于知识增强的知识图谱补全方法KEKGC。设计一种特定模板,将三元组及其描述信息通过人工定义的模板转换为连贯的自然语言描述语句输入预训练语言模型,增强语言模型对三元组结构知识与描述知识的理解能力。在此基础上,提出一种对比学习框架来提高链接预测任务的效率与准确率,通过建立记忆库存储实体嵌入向量,从中选择正负样本并结合Info NCE损失进行训练。实验结果显示,相较于MEM-KGC,KEKGC在WN18RR数据集上链接预测任务的平均倒数秩(MRR)提升了5.5,Hits@1、Hits@3、Hits@10指标分别提升了2.8、0.7、4.2个百分点,三元组分类任务准确率达到94.1%,表明所提方法具有更高的预测准确率与更好的泛化能力,尤其对于长尾实体,能够有效提升图谱补全的效果与效率。 展开更多
关键词 知识图谱 预训练语言模型 链接预测 对比学习 实体描述
在线阅读 下载PDF
基于掩码提示与门控记忆网络校准的关系抽取方法 被引量:2
8
作者 魏超 陈艳平 +2 位作者 王凯 秦永彬 黄瑞章 《计算机应用》 CSCD 北大核心 2024年第6期1713-1719,共7页
针对关系抽取(RE)任务中实体关系语义挖掘困难和预测关系有偏差等问题,提出一种基于掩码提示与门控记忆网络校准(MGMNC)的RE方法。首先,利用提示中的掩码学习实体之间在预训练语言模型(PLM)语义空间中的潜在语义,通过构造掩码注意力权... 针对关系抽取(RE)任务中实体关系语义挖掘困难和预测关系有偏差等问题,提出一种基于掩码提示与门控记忆网络校准(MGMNC)的RE方法。首先,利用提示中的掩码学习实体之间在预训练语言模型(PLM)语义空间中的潜在语义,通过构造掩码注意力权重矩阵,将离散的掩码语义空间相互关联;其次,采用门控校准网络将含有实体和关系语义的掩码表示融入句子的全局语义;再次,将它们作为关系提示校准关系信息,随后将句子表示的最终表示映射至相应的关系类别;最后,通过更好地利用提示中掩码,并结合传统微调方法的学习句子全局语义的优势,充分激发PLM的潜力。实验结果表明,所提方法在SemEval(SemEval-2010 Task 8)数据集的F1值达到91.4%,相较于RELA(Relation Extraction with Label Augmentation)生成式方法提高了1.0个百分点;在SciERC(Entities, Relations, and Coreference for Scientific knowledge graph construction)和CLTC(Chinese Literature Text Corpus)数据集上的F1值分别达到91.0%和82.8%。所提方法在上述3个数据集上均明显优于对比方法,验证了所提方法的有效性。相较于基于生成式的方法,所提方法实现了更优的抽取性能。 展开更多
关键词 关系抽取 掩码 门控神经网络 预训练语言模型 提示学习
在线阅读 下载PDF
基于递进式卷积网络的农业命名实体识别方法 被引量:2
9
作者 计洁 金洲 +2 位作者 王儒敬 刘海燕 李志远 《智慧农业(中英文)》 CSCD 2023年第1期122-131,共10页
目前基于预训练语言模型(Pre-trained Language Model,PLM)的命名实体识别的研究在面对农业领域存在的实体命名方式繁杂、实体边界模糊等问题时,仅使用PLM最后一层表示输出,且均从外部引入知识或操作对实体表示进行增强,忽视内部各层本... 目前基于预训练语言模型(Pre-trained Language Model,PLM)的命名实体识别的研究在面对农业领域存在的实体命名方式繁杂、实体边界模糊等问题时,仅使用PLM最后一层表示输出,且均从外部引入知识或操作对实体表示进行增强,忽视内部各层本身蕴含语言不同层次的丰富信息。为解决上述问题,提出一种基于递进式卷积网络的命名实体识别方法。该方法首先存储自然句子,通过PLM后得到的每层输出表示;其次以递进式卷积作为全层信息的特征提取手段,对储存的模型中间层输出表示依次卷积。模型将注重全层信息,包括被忽略的浅层输出,而有研究表明靠近输入的模型层输出的句子嵌入包含更多的诸如短语、词组等粗粒度信息,对于边界模糊的农业命名实体识别,更关键的词组界定信息或许就隐含在这些被忽略的浅层嵌入中,可为农业领域存在的命名实体识别问题提供帮助。无需外部信息的引入,充分利用已使用的计算力得到的结果就能增强句子的表示嵌入;最终通过条件随机场(Conditional Random Field,CRF)模型生成全局最优序列。在构建的包含农作物品种、病害、虫害和农药4类农业实体的农业数据集上,所提方法的综合性指标F1值相较于基于Transformer的双向编码表征模型(Bidirectional Encoder Representation from Transformers, BERT)提升3.61%,在公开数据集上也有较好表现,其中在数据集MSRA上F1值提升至94.96%,说明基于递进式的卷积网络能够增强模型对自然语言的表示能力,在命名实体识别任务上具有优势。 展开更多
关键词 农业命名实体识别 预训练语言模型 卷积网络 表示聚合 深度学习
在线阅读 下载PDF
基于Prompt学习的无监督关系抽取模型
10
作者 黄梦林 段磊 +2 位作者 张袁昊 王培妍 李仁昊 《计算机应用》 CSCD 北大核心 2023年第7期2010-2016,共7页
无监督关系抽取旨在从无标签的自然语言文本中抽取实体之间的语义关系。目前,基于变分自编码器(VAE)架构的无监督关系抽取模型通过重构损失提供监督信号来训练模型,这为完成无监督关系抽取任务提供了新思路。针对此类模型无法有效地理... 无监督关系抽取旨在从无标签的自然语言文本中抽取实体之间的语义关系。目前,基于变分自编码器(VAE)架构的无监督关系抽取模型通过重构损失提供监督信号来训练模型,这为完成无监督关系抽取任务提供了新思路。针对此类模型无法有效地理解上下文信息、依赖数据集归纳偏置的问题,提出基于Prompt学习的无监督关系抽取(PURE)模型,其中包括关系抽取和链接预测两个模块。在关系抽取模块中设计了上下文感知的Prompt模板函数以融入上下文信息,并将无监督关系抽取任务转换为掩码预测任务,从而充分利用预训练阶段获得的知识完成关系抽取。在链接预测模块中则通过预测关系三元组中的缺失实体提供监督信号联合训练两个模块。在两个公开真实关系抽取数据集上进行了大量实验,得到的结果表明PURE模型能有效利用上下文信息并且不依赖数据集归纳偏置,相较于目前最优的基于VAE架构的模型UREVA(Variational Autoencoder-based Unsupervised Relation Extraction model)在NYT数据集上的B-cubed F1指标上提升了3.3个百分点。 展开更多
关键词 无监督关系抽取 Prompt学习 变分自编码器 预训练语言模型 无监督学习
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部