期刊文献+
共找到260篇文章
< 1 2 13 >
每页显示 20 50 100
Optimization of support vector machine power load forecasting model based on data mining and Lyapunov exponents 被引量:7
1
作者 牛东晓 王永利 马小勇 《Journal of Central South University》 SCIE EI CAS 2010年第2期406-412,共7页
According to the chaotic and non-linear characters of power load data,the time series matrix is established with the theory of phase-space reconstruction,and then Lyapunov exponents with chaotic time series are comput... According to the chaotic and non-linear characters of power load data,the time series matrix is established with the theory of phase-space reconstruction,and then Lyapunov exponents with chaotic time series are computed to determine the time delay and the embedding dimension.Due to different features of the data,data mining algorithm is conducted to classify the data into different groups.Redundant information is eliminated by the advantage of data mining technology,and the historical loads that have highly similar features with the forecasting day are searched by the system.As a result,the training data can be decreased and the computing speed can also be improved when constructing support vector machine(SVM) model.Then,SVM algorithm is used to predict power load with parameters that get in pretreatment.In order to prove the effectiveness of the new model,the calculation with data mining SVM algorithm is compared with that of single SVM and back propagation network.It can be seen that the new DSVM algorithm effectively improves the forecast accuracy by 0.75%,1.10% and 1.73% compared with SVM for two random dimensions of 11-dimension,14-dimension and BP network,respectively.This indicates that the DSVM gains perfect improvement effect in the short-term power load forecasting. 展开更多
关键词 power load forecasting support vector machine sVM) Lyapunov exponent data mining embedding dimension feature classification
在线阅读 下载PDF
Support vector machine forecasting method improved by chaotic particle swarm optimization and its application 被引量:11
2
作者 李彦斌 张宁 李存斌 《Journal of Central South University》 SCIE EI CAS 2009年第3期478-481,共4页
By adopting the chaotic searching to improve the global searching performance of the particle swarm optimization (PSO), and using the improved PSO to optimize the key parameters of the support vector machine (SVM) for... By adopting the chaotic searching to improve the global searching performance of the particle swarm optimization (PSO), and using the improved PSO to optimize the key parameters of the support vector machine (SVM) forecasting model, an improved SVM model named CPSO-SVM model was proposed. The new model was applied to predicting the short term load, and the improved effect of the new model was proved. The simulation results of the South China Power Market’s actual data show that the new method can effectively improve the forecast accuracy by 2.23% and 3.87%, respectively, compared with the PSO-SVM and SVM methods. Compared with that of the PSO-SVM and SVM methods, the time cost of the new model is only increased by 3.15 and 4.61 s, respectively, which indicates that the CPSO-SVM model gains significant improved effects. 展开更多
关键词 chaotic searching particle swarm optimization (PsO) support vector machine sVM) short term load forecast
在线阅读 下载PDF
Least Squares-support Vector Machine Load Forecasting Approach Optimized by Bacterial Colony Chemotaxis Method
3
作者 ZENG Ming LU Chunquan +1 位作者 TIAN Kuo XUE Song 《中国电机工程学报》 EI CSCD 北大核心 2011年第34期I0009-I0009,共1页
During the Twelfth Five-Year plan,large-scale construction of smart grid with safe and stable operation requires a timely and accurate short-term load forecasting method.Moreover,along with the full-scale smart grid c... During the Twelfth Five-Year plan,large-scale construction of smart grid with safe and stable operation requires a timely and accurate short-term load forecasting method.Moreover,along with the full-scale smart grid construction,the power supply mode and consumption mode of the whole system can be optimized through the accurate short-term load forecasting;and the security,stability and cleanness of the system can be guaranteed. 展开更多
关键词 short-term load forecasting hyper-parameters selection bacterial colony chemotaxis(BCC) least squares support vector machine(Ls-sVM)
在线阅读 下载PDF
RS-SVM forecasting model and power supply-demand forecast 被引量:4
4
作者 杨淑霞 曹原 +1 位作者 刘达 黄陈锋 《Journal of Central South University》 SCIE EI CAS 2011年第6期2074-2079,共6页
A support vector machine (SVM) forecasting model based on rough set (RS) data preprocess was proposed by combining the rough set attribute reduction and the support vector machine regression algorithm, because there a... A support vector machine (SVM) forecasting model based on rough set (RS) data preprocess was proposed by combining the rough set attribute reduction and the support vector machine regression algorithm, because there are strong complementarities between two models. Firstly, the rough set was used to reduce the condition attributes, then to eliminate the attributes that were redundant for the forecast, Secondly, it adopted the minimum condition attributes obtained by reduction and the corresponding original data to re-form a new training sample, which only kept the important attributes affecting the forecast accuracy. Finally, it studied and trained the SVM with the training samples after reduction, inputted the test samples re-formed by the minimum condition attributes and the corresponding original data, and then got the mapping relationship model between condition attributes and forecast variables after testing it. This model was used to forecast the power supply and demand. The results show that the average absolute error rate of power consumption of the whole society and yearly maximum load are 14.21% and 13.23%, respectively, which indicates that the RS-SVM forecast model has a higher degree of accuracy. 展开更多
关键词 rough set (Rs support vector machine sVM) power supply and demand FORECAsT
在线阅读 下载PDF
A new support vector machine optimized by improved particle swarm optimization and its application 被引量:3
5
作者 李翔 杨尚东 乞建勋 《Journal of Central South University of Technology》 EI 2006年第5期568-572,共5页
A new support vector machine (SVM) optimized by an improved particle swarm optimization (PSO) combined with simulated annealing algorithm (SA) was proposed. By incorporating with the simulated annealing method, ... A new support vector machine (SVM) optimized by an improved particle swarm optimization (PSO) combined with simulated annealing algorithm (SA) was proposed. By incorporating with the simulated annealing method, the global searching capacity of the particle swarm optimization(SAPSO) was enchanced, and the searching capacity of the particle swarm optimization was studied. Then, the improyed particle swarm optimization algorithm was used to optimize the parameters of SVM (c,σ and ε). Based on the operational data provided by a regional power grid in north China, the method was used in the actual short term load forecasting. The results show that compared to the PSO-SVM and the traditional SVM, the average time of the proposed method in the experimental process reduces by 11.6 s and 31.1 s, and the precision of the proposed method increases by 1.24% and 3.18%, respectively. So, the improved method is better than the PSO-SVM and the traditional SVM. 展开更多
关键词 support vector machine particle swarm optimization algorithm short-term load forecasting simulated annealing
在线阅读 下载PDF
基于SVM的极端天气下新能源短期功率预测修正方法
6
作者 姚旭 鲁敏 +2 位作者 胡均涛 栗凡 常喜强 《石河子大学学报(自然科学版)》 北大核心 2025年第3期288-294,共7页
基于“双碳”(碳达峰、碳中和)政策框架,以光伏、风电为核心的可再生能源在我国电网中的渗透率持续提升,并考虑到新能源出力具有明显间歇性与波动性,且功率预测的准确性直接影响消纳新能源的能力,以及极端天气使新能源短期功率预测结果... 基于“双碳”(碳达峰、碳中和)政策框架,以光伏、风电为核心的可再生能源在我国电网中的渗透率持续提升,并考虑到新能源出力具有明显间歇性与波动性,且功率预测的准确性直接影响消纳新能源的能力,以及极端天气使新能源短期功率预测结果与实际产生严重偏差,使源-荷之间产生极大不平衡,提出一种基于支持向量机的iForest-rForest-SVM算法,采用孤立森林算法实现数据清洗:首先识别并剔除突变值,其次对缺失值进行插值补全;在此基础上,通过随机森林算法构建特征加权样本子集,最后采用支持向量机根据偏差对模型进行修正。通过具体案例计算及分析,结果表明相较于传统支持向量机算法,本文提出的iForest-rForest-SVM算法将新能源短期功率预测的平均准确率提升2%,验证了该修正方法和流程的有效性,并为提高极端天气下新能源短期功率预测准确率提供了借鉴措施和建议方案。 展开更多
关键词 数据分析 新能源短期功率预测 模型修正 孤立森林算法 支持向量机算法
在线阅读 下载PDF
基于数据挖掘的SVM短期负荷预测方法研究 被引量:122
7
作者 牛东晓 谷志红 +1 位作者 邢棉 王会青 《中国电机工程学报》 EI CSCD 北大核心 2006年第18期6-12,共7页
支持向量机方法已成功地应用在负荷预测领域,但它在训练数据时存在数据处理量太大、处理速度慢等缺点。为此提出了一种基于数据挖掘预处理的支持向量机预测系统,引用在处理大数据量、消除冗余信息等方面具有独特优势的数据挖掘技术,寻... 支持向量机方法已成功地应用在负荷预测领域,但它在训练数据时存在数据处理量太大、处理速度慢等缺点。为此提出了一种基于数据挖掘预处理的支持向量机预测系统,引用在处理大数据量、消除冗余信息等方面具有独特优势的数据挖掘技术,寻找与预测日同等气象类型的多个历史短期负荷,由此组成具有高度相似气象特征的数据序列,将此数据序列作为支持向量机的训练数据,可减少数据量,从而提高预测的速度和精度,克服支持向量机的上述缺点。将该系统应用于短期负荷预测中,与单纯的SVM方法和BP神经网络法相比,得到了较高的预测精度。 展开更多
关键词 电力系统 数据挖掘 气象因素 支持向量机 短期负荷预测
在线阅读 下载PDF
基于S变换的电能质量扰动支持向量机分类识别 被引量:121
8
作者 占勇 程浩忠 +2 位作者 丁屹峰 吕干云 孙毅斌 《中国电机工程学报》 EI CSCD 北大核心 2005年第4期51-56,共6页
采用 S 变换和支持向量机进行电能质量扰动的分类识别。作为连续小波变换和短时傅立叶变换的发展,S 变换引入了宽度与频率成反向变化的高斯窗,具有与频率相关的分辨率。由于 S 变换具有良好的时频特性,因而非常适合于进行电能质量扰动... 采用 S 变换和支持向量机进行电能质量扰动的分类识别。作为连续小波变换和短时傅立叶变换的发展,S 变换引入了宽度与频率成反向变化的高斯窗,具有与频率相关的分辨率。由于 S 变换具有良好的时频特性,因而非常适合于进行电能质量扰动信号特征提取。首先通过 S 变换进行扰动信号特征提取,然后构造支持向量机分类树进行扰动分类。算例表明该方案具有分类准确率高,对噪声不敏感,训练样本少等优点,是电能质量扰动识别的有效方法。 展开更多
关键词 电力系统 电能质量 支持向量机 s变换 扰动识别 小波变换
在线阅读 下载PDF
基于变分模态分解-BA-LSSVM算法的配电网短期负荷预测 被引量:32
9
作者 赵凤展 郝帅 +5 位作者 张宇 杜松怀 单葆国 苏娟 井天军 赵婷婷 《农业工程学报》 EI CAS CSCD 北大核心 2019年第14期190-197,共8页
配电台区日负荷序列呈现为既包含变化趋势、又含有波动细节的不规则曲线,该文借助变分模态分解(variational mode decomposition,VMD)将包含这些信息的原始日负荷序列分解为不同频率尺度的子序列,并结合一系列复杂的环境因素,分别利用... 配电台区日负荷序列呈现为既包含变化趋势、又含有波动细节的不规则曲线,该文借助变分模态分解(variational mode decomposition,VMD)将包含这些信息的原始日负荷序列分解为不同频率尺度的子序列,并结合一系列复杂的环境因素,分别利用不同的最小二乘支持向量机(least squares support vector machine,LSSVM)模型进行负荷预测,最后将基于不同频率分量的预测结果相加得到最终的日负荷预测结果。为了提高LSSVM预测能力,采用蝙蝠算法(bat algorithm,BA)对各LSSVM的参数进行寻优,同时,该文分析了影响负荷变化的环境因素,设计了一套因素归一化方法,预测过程考虑了环境因素的影响。仿真结果表明,该文提出的考虑复杂环境因素的预测思想及对历史日负荷进行VMD分解、BA优化、LSSVM预测的组合预测方法能有效提高短期日负荷预测的准确性。 展开更多
关键词 算法 电能 配电台区负荷预测 变分模态分解 最小二乘支持向量机 蝙蝠算法 复杂环境因素
在线阅读 下载PDF
基于EEMD-SVM方法的光伏电站短期出力预测 被引量:113
10
作者 茆美琴 龚文剑 +2 位作者 张榴晨 曹雨 徐海波 《中国电机工程学报》 EI CSCD 北大核心 2013年第34期17-24,5,共8页
针对光伏电站日前小时短期出力预测问题,提出一种基于集合经验模态分解(ensemble empirical mode decomposition,EEMD)和支持向量机(support vector machines,SVM)的EEMD-SVM组合模型预测方法。该方法将天气类型分为突变天气和非突变天... 针对光伏电站日前小时短期出力预测问题,提出一种基于集合经验模态分解(ensemble empirical mode decomposition,EEMD)和支持向量机(support vector machines,SVM)的EEMD-SVM组合模型预测方法。该方法将天气类型分为突变天气和非突变天气。首先采用EEMD分解法将历史光伏电站小时出力数据分解为一系列相对平稳的分量序列,对不同的天气类型考虑不同的气象因素,然后采用SVM法对所分解的各分量序列分别建立预测模型,选用不同的核函数和参数以取得单个分量序列的最佳预测精度。算例结果表明,分类建模思想和EEMD-SVM组合预测法能够使突变天气预测结果的平均绝对百分比误差减少5%,非突变天气的减少3%。 展开更多
关键词 集合经验模态分解 支持向量机 光伏电站 短期 预测 组合预测模型
在线阅读 下载PDF
基于Spark和IPPSO_LSSVM的短期分布式电力负荷预测算法 被引量:49
11
作者 王保义 王冬阳 张少敏 《电力自动化设备》 EI CSCD 北大核心 2016年第1期117-122,共6页
为了提高电力负荷预测的精度,应对单机运算资源不足的挑战,提出一种改进并行化粒子群算法优化的最小二乘支持向量机短期负荷预测模型。通过引入Spark on YARN内存计算平台,将改进并行粒子群优化(IPPSO)算法部署在平台上,对最小二乘支持... 为了提高电力负荷预测的精度,应对单机运算资源不足的挑战,提出一种改进并行化粒子群算法优化的最小二乘支持向量机短期负荷预测模型。通过引入Spark on YARN内存计算平台,将改进并行粒子群优化(IPPSO)算法部署在平台上,对最小二乘支持向量机(LSSVM)的不确定参数进行算法优化,利用优化后的参数进行负荷预测。通过引入并行化和分布式的思想,提高算法预测准确率和处理海量高维数据的能力。采用EUNITE提供的真实负荷数据,在8节点的云计算集群上进行实验和分析,结果表明所提分布式电力负荷预测算法精度优于传统的泛化神经网络算法,在执行效率上优于基于Map Reduce的分布式在线序列优化学习机算法,且提出的算法具有较好的并行能力。 展开更多
关键词 sPARK IPPsO LssVM 负荷预测 短期预测 支持向量机 并行处理 优化
在线阅读 下载PDF
基于聚类改进S变换与直接支持向量机的电能质量扰动识别 被引量:33
12
作者 徐志超 杨玲君 李晓明 《电力自动化设备》 EI CSCD 北大核心 2015年第7期50-58,73,共10页
针对电能质量扰动信号的识别问题,提出基于聚类改进S变换与直接支持向量机(SVM)的电能质量扰动识别方法。提出聚类改进S变换方法,该方法结合电能质量扰动信号的特点,可同时对基频的时域分辨率及高频的频域分辨率进行最优化处理,保证特... 针对电能质量扰动信号的识别问题,提出基于聚类改进S变换与直接支持向量机(SVM)的电能质量扰动识别方法。提出聚类改进S变换方法,该方法结合电能质量扰动信号的特点,可同时对基频的时域分辨率及高频的频域分辨率进行最优化处理,保证特征提取的准确性;将直接支持向量机作为分类器,与最小二乘支持向量机相比,其求解简单,计算复杂度较低,训练与测试速度快,泛化能力较高,并且避免不能保证全局最优解的缺点;将聚类改进S变换与直接支持向量机相结合,应用于单一扰动及混合扰动的识别分类工作。仿真实验验证了所提方法的有效性。 展开更多
关键词 电能质量 扰动识别 聚类改进s变换 直接支持向量机 支持向量机
在线阅读 下载PDF
基于D-S证据理论的短期风速预测模型 被引量:14
13
作者 刘亚南 卫志农 +5 位作者 朱艳 孙国强 孙永辉 杨友情 钱瑛 周军 《电力自动化设备》 EI CSCD 北大核心 2013年第8期131-136,共6页
提出一种基于D-S证据理论的短期风速组合预测模型。分别采用时间序列、BP神经网络和支持向量机预测模型对风速进行预测,通过对预测误差的分析,借助D-S证据理论对3种模型进行融合。选取待测日前几日的风速数据作为融合样本,计算出相应的... 提出一种基于D-S证据理论的短期风速组合预测模型。分别采用时间序列、BP神经网络和支持向量机预测模型对风速进行预测,通过对预测误差的分析,借助D-S证据理论对3种模型进行融合。选取待测日前几日的风速数据作为融合样本,计算出相应的基本信任分配函数,同时将函数进行融合,并将融合结果作为风速预测模型的权重,得到待预测日的风速预测结果。仿真结果表明,所提组合预测模型的预测误差更小,效果更好。 展开更多
关键词 风电 时间序列 BP神经网络 支持向量机 D-s证据理论 预测 模型
在线阅读 下载PDF
基于S变换与SVM的电能质量复合扰动识别 被引量:80
14
作者 黄南天 徐殿国 刘晓胜 《电工技术学报》 EI CSCD 北大核心 2011年第10期23-30,共8页
针对电能质量复合扰动识别困难的问题,提出了一种基于S变换与支持向量机(SVM)的电能质量复合扰动分类识别方法。首先对电能质量信号进行S变换,针对变换结果在不同频率范围内提取原始信号特征。然后采用统计方法进行特征选择,确定最优的... 针对电能质量复合扰动识别困难的问题,提出了一种基于S变换与支持向量机(SVM)的电能质量复合扰动分类识别方法。首先对电能质量信号进行S变换,针对变换结果在不同频率范围内提取原始信号特征。然后采用统计方法进行特征选择,确定最优的两种特征构成特征向量,作为SVM的训练样本。最后将分类器应用于电能质量扰动识别。该模型通过特征选择,不仅降低了特征计算量,而且节省了分类器的训练、分类时间。仿真实验表明该模型能够精确识别包括两种复合扰动在内的8种电能质量扰动信号。 展开更多
关键词 电能质量扰动 扰动识别 s变换 支持向量机 特征选择
在线阅读 下载PDF
基于D-S证据理论的相似日支持向量机短期负荷预测 被引量:19
15
作者 李鑫滨 张娟 +1 位作者 张岩 卢志刚 《电网技术》 EI CSCD 北大核心 2010年第7期143-147,共5页
针对基于支持向量机(support vector machine,SVM)的负荷预测方法存在数据输入维数大、训练时间长等缺点,提出了一种基于证据融合的相似日支持向量机预测方法。选取相似日时考虑平均负荷的大小、负荷曲线形状和温度差值,通过证据融合得... 针对基于支持向量机(support vector machine,SVM)的负荷预测方法存在数据输入维数大、训练时间长等缺点,提出了一种基于证据融合的相似日支持向量机预测方法。选取相似日时考虑平均负荷的大小、负荷曲线形状和温度差值,通过证据融合得到与预测日负荷高度相似的相似日,以此作为支持向量机的训练数据,剔除了大量的冗余数据,减少了输入维数,提高了预测精度。将该方法用于短期负荷预测,并与采用标准支持向量机法得到的结果进行对比,发现该方法可显著提高预测精度。 展开更多
关键词 短期负荷预测 相似日 支持向量机 证据理论
在线阅读 下载PDF
基于改进的PSO-SVM的短期电力负荷预测 被引量:28
16
作者 王义军 李殿文 +1 位作者 高超 张洪赫 《电测与仪表》 北大核心 2015年第3期22-25,共4页
提出一种基于PSO-SVM电力负荷短期预测方法,在SVM学习过程中引入粒子群算法。通过选取组合核函数来改进SVM算法,这样可以充分保证计算速度和较高的预测精度。利用吉林地区的历史负荷数据作为训练样本,通过与传统的SVM预测模型进行对比,... 提出一种基于PSO-SVM电力负荷短期预测方法,在SVM学习过程中引入粒子群算法。通过选取组合核函数来改进SVM算法,这样可以充分保证计算速度和较高的预测精度。利用吉林地区的历史负荷数据作为训练样本,通过与传统的SVM预测模型进行对比,对预测结果与实际数据进行比较,证明基于组合核函数预测方法在一定程度上能够保证短期负荷预测的精度。 展开更多
关键词 电力系统 气象因素 支持向量机 短期负荷预测
在线阅读 下载PDF
经济新常态下基于Verhulst-SVM的中长期负荷预测模型 被引量:22
17
作者 张冠英 羡一鸣 +3 位作者 葛磊蛟 王莹 赵滨滨 王尧 《电测与仪表》 北大核心 2019年第1期102-107,共6页
经济新常态背景下,电力系统中长期负荷预测面临着很多新问题,例如:GDP、人口等电力负荷影响因素呈"S"型曲线增长、电力负荷影响因素与电力负荷之间的不确定性增加、历史样本数量少等。为此,提出一种基于Verhulst-SVM的中长期... 经济新常态背景下,电力系统中长期负荷预测面临着很多新问题,例如:GDP、人口等电力负荷影响因素呈"S"型曲线增长、电力负荷影响因素与电力负荷之间的不确定性增加、历史样本数量少等。为此,提出一种基于Verhulst-SVM的中长期负荷预测模型。首先,从经济新常态特征中提取影响电力负荷的主要因素,并分析各影响因素的发展趋势;然后,利用Verhulst模型对"S"型曲线增长的电力负荷影响因素进行预测,并采用支持向量机(Support Vector Machine,SVM)替代线性回归预测模型,实现小样本、高不确定性条件下中长期负荷高精度预测。最后,通过天津市2015年和2016年的负荷预测算例,验证了所提模型的精度和可靠性,可为经济新常态背景下中长期负荷预测提供借鉴。 展开更多
关键词 经济新常态 负荷预测 VERHULsT模型 支持向量机
在线阅读 下载PDF
基于多分辨率SVM回归估计的短期负荷预测 被引量:19
18
作者 畅广辉 刘涤尘 熊浩 《电力系统自动化》 EI CSCD 北大核心 2007年第9期37-41,共5页
针对短期负荷预测支持向量机(SVM)方法的局部逼近能力和泛化能力进行研究,将多分辨率支持向量机(M-SVM)用于短期负荷预测中节点负荷预测曲线的回归估计。该理论在保持曲线总体逼近能力的同时提高了局部区域的逼近能力。文中根据短期负... 针对短期负荷预测支持向量机(SVM)方法的局部逼近能力和泛化能力进行研究,将多分辨率支持向量机(M-SVM)用于短期负荷预测中节点负荷预测曲线的回归估计。该理论在保持曲线总体逼近能力的同时提高了局部区域的逼近能力。文中根据短期负荷预测的具体特点,设计了负荷预测数学模型,采用96条回归曲线进行日负荷的曲线预测,并在该模型的基础上采用实际数据进行验证,分析了这种回归模型的泛化能力。实验结果表明M-SVM模型在预测精度和预测速度方面具有优良的特性。 展开更多
关键词 短期负荷预测 支持向量机 多分辨率 泛化能力
在线阅读 下载PDF
基于EMD和SVM的短期负荷预测 被引量:42
19
作者 祝志慧 孙云莲 季宇 《高电压技术》 EI CAS CSCD 北大核心 2007年第5期118-122,共5页
为了有效预测具有一定周期性和随机性的非平稳时间序列性的电力负荷,提高预测精度,提出了结合经验模式分解(EMD)和支持向量机(SVM)的短期负荷预测法。该法运用EMD将负荷序列分解成若干个不同频率的平稳分量,分解后的分量突出了原负荷的... 为了有效预测具有一定周期性和随机性的非平稳时间序列性的电力负荷,提高预测精度,提出了结合经验模式分解(EMD)和支持向量机(SVM)的短期负荷预测法。该法运用EMD将负荷序列分解成若干个不同频率的平稳分量,分解后的分量突出了原负荷的局部特征,能更明显的看出原负荷序列的周期项、随机项和趋势项;根据各个分量的变化规律,选择合适的SVM参数和核函数构造不同的支持向量机分别预测;由SVM对各分量的预测值组合得到最终预测值。仿真试验表明,此方法与单一的SVM预测法及BP神经网络预测法相比,具有较高的精度和较强的推广能力。 展开更多
关键词 短期负荷 经验模式分解 本征模式分量 支持向量机 核函数 组合预测
在线阅读 下载PDF
基于改进蚁群算法优化参数的LSSVM短期负荷预测 被引量:39
20
作者 龙文 梁昔明 +1 位作者 龙祖强 李朝辉 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第11期3408-3414,共7页
提出一种自动优选最小二乘支持向量机(LSSVM)模型参数的改进蚁群(MACO)算法。该算法将LSSVM模型的参数作为蚂蚁的位置向量,然后采用动态随机抽取的方法来确定目标个体引导蚁群进行全局搜索,同时在最优蚂蚁邻域内进行小步长局部搜索,找... 提出一种自动优选最小二乘支持向量机(LSSVM)模型参数的改进蚁群(MACO)算法。该算法将LSSVM模型的参数作为蚂蚁的位置向量,然后采用动态随机抽取的方法来确定目标个体引导蚁群进行全局搜索,同时在最优蚂蚁邻域内进行小步长局部搜索,找到模型的最优参数,得到基于MACO算法优化的LSSVM(MACO-LSSVM)预测模型。将优化后的LSSVM模型应用于短期电力负荷预测问题,选择湖南某地区日期为2009-08-01至2009-08-30各小时点的数据进行分析,对2009-08-31该日24 h的负荷进行预测,并与BP神经网络和SVM模型进行比较。研究结果表明:本文方法得到的均方根相对误差为1.71%,比用BP神经网络和SVM模型得到的均方根相对误差分别低1.61%和1.05%。 展开更多
关键词 最小二乘支持向量机 蚁群优化算法 参数优化 短期负荷预测
在线阅读 下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部