Energy saving is the most important issue in research and development for wireless sensor networks. A power control mechanism can reduce the power consumption of the whole network. Because the character of wireless se...Energy saving is the most important issue in research and development for wireless sensor networks. A power control mechanism can reduce the power consumption of the whole network. Because the character of wireless sensor networks is restrictive energy, this paper proposes a distributed power control algorithm based on game theory for wireless sensor networks which objects of which are reducing power consumption and decreasing overhead and increasing network lifetime. The game theory and OPNET simulation shows that the power control algorithm converges to a Nash Equilibrium when decisions are updated according to a better response dynamic.展开更多
When a new user accesses the CDMA system, the load will change drastically, and therefore, the advanced outer loop power control (OLPC) technology has to be adopted to enrich the target signal interference ratio (S...When a new user accesses the CDMA system, the load will change drastically, and therefore, the advanced outer loop power control (OLPC) technology has to be adopted to enrich the target signal interference ratio (Silt) and improve the system performance. The existing problems about DS-CDMA outer loop power control for multi-service are introduced and the power control theoretical model is analyzed. System simulation is adopted on how to obtain the theoretical performance and parameter optimization of the power control algorithm. The OLPC algorithm is improved and the performance comparisons between the old algorithm and the improved algorithm are given. The results show good performance of the improved OLPC algorithm and prove the validity of the improved method for multi-service.展开更多
A low complexity Per-Antenna Power Control (PAPC) approach based on Minimum Mean Squared Error (MMSE) detection for V-BLAST is proposed in this paper. The PAPC approach is developed for minimizing the Bit Error Ra...A low complexity Per-Antenna Power Control (PAPC) approach based on Minimum Mean Squared Error (MMSE) detection for V-BLAST is proposed in this paper. The PAPC approach is developed for minimizing the Bit Error Rate (BER) averaged over all substreams when the data throughput and the total transmit power keep constant over time. Simulation results show that the Power-controlled V-BLAST (P-BLAST) outperforms the conventional V-BLAST in terms of BER performance with MMSE detector, especially in presence of high spatial correlation between antennas. However, the additional complexity for P-BLAST is not high. When MMSE detector is adopted, the P-BLAST can achieve a comparable BER performance to that of conventional V-BLAST with Maximum Likelihood (ML) detector but with low complexity.展开更多
A joint power control and relay selection scheme is considered for a cooperative and cognitive radio system where a secondary network shares spectrum with the primary network. In the secondary network, two secondary u...A joint power control and relay selection scheme is considered for a cooperative and cognitive radio system where a secondary network shares spectrum with the primary network. In the secondary network, two secondary users (SUs) communicate with each other via an assist relay. The main point is to provide the best system performance to SUs while maintaining the interference power at primary user (PU) under a certain level. Using convex optimization, a closed-form solution is obtained when optimizing the power allocation among the two nodes and relay. Based on this result, a joint power control and relay selection scheme with fewer variable dimensions is proposed to maximize the achievable rate of the secondary system. Simulation results demonstrate that the sum rate of the cognitive two-way relay network increases compared with a random relay selection and fixed power allocation.展开更多
Based on the analysis of the feature of cognitive radio networks, a relevant interference model was built. Cognitive users should consider especially the problem of interference with licensed users and satisfy the sig...Based on the analysis of the feature of cognitive radio networks, a relevant interference model was built. Cognitive users should consider especially the problem of interference with licensed users and satisfy the signal-to-interference noise ratio (SINR) requirement at the same time. According to different power thresholds, an approach was given to solve the problem of coexistence between licensed user and cognitive user in cognitive system. Then, an uplink distributed power control algorithm based on traditional iterative model was proposed. Convergence analysis of the algorithm in case of feasible systems was provided. Simulations show that this method can provide substantial power savings as compared with the power balancing algorithm while reducing the achieved SINR only slightly, since 6% S1NR loss can bring 23% power gain. Through further simulations, it can be concluded that the proposed solution has better effect as the noise power or system load increases.展开更多
Two optimal power control (PC) schemes under the power constraint for space-time coded multiple input multiple output systems over the flat Rayleigh fading channel with the imperfect channel state information (CSI...Two optimal power control (PC) schemes under the power constraint for space-time coded multiple input multiple output systems over the flat Rayleigh fading channel with the imperfect channel state information (CSI) are presented. One is based on the minimization of a bit error rate (BER), and the other is based on the maximization of a fuzzy signal-to-noise ratio. In these schemes, different powers are allocated to individual transmit an- tennas rather than equal power in the conventional one. For the first scheme, the optimal PC procedure is developed. It is shown that the Lagrange multiplier for the constrained optimization in the power control does exist and is unique. A practical iterative algorithm based on Newton's method for finding the Lagrange multiplier is proposed. In the second scheme, some existing schemes are included, and a suboptimal PC procedure is developed by means of the asymptotic performance analysis. With this suboptimal scheme, a simple PC calculation formula is provided, and thus the calculation of the PC will be straightforward. Moreover, the suboptimal scheme has the BER performance close to the optimal scheme. Simulation results show that the two PC schemes can provide BER lower than the equal PC and antenna selection scheme under the imperfect CSI.展开更多
A novel distributed power control algorithm based on interference estimation is presented for wireless cellular system. A classical result of stochastic approximation is applied in this scheme.The power control algori...A novel distributed power control algorithm based on interference estimation is presented for wireless cellular system. A classical result of stochastic approximation is applied in this scheme.The power control algorithm is converted to seeking for the zero point problem of a certain function.In this distributed power algorithm, each user iteratively updates its power level by estimating the interference. It does not require any knowledge of the channel gains or state information of other users. Hence, the proposed algorithm is robust. It is proved that the algorithm converges to the optimal solution by stochastic approximation approach.展开更多
Power efficiency and link reliability are of great impor- tance in hierarchical wireless sensor networks (HWSNs), espe- cially at the key level, which consists of sensor nodes located only one hop away from the sink...Power efficiency and link reliability are of great impor- tance in hierarchical wireless sensor networks (HWSNs), espe- cially at the key level, which consists of sensor nodes located only one hop away from the sink node called OHS. The power and admission control problem in HWSNs is comsidered to improve its power efficiency and link reliability. This problem is modeled as a non-cooperative game in which the active OHSs are con- sidered as players. By applying a double-pricing scheme in the definition of OHSs' utility function, a Nash Equilibrium solution with network properties is derived. Besides, a distributed algorithm is also proposed to show the dynamic processes to achieve Nash Equilibrium. Finally, the simulation results demonstrate the effec- tiveness of the proposed algorithm.展开更多
Wide area damping controller(WADC) is usually utilized to damp interarea low frequency oscillation in power system. However, conventional WADC design method neglects the influence of signal transmission delay and damp...Wide area damping controller(WADC) is usually utilized to damp interarea low frequency oscillation in power system. However, conventional WADC design method neglects the influence of signal transmission delay and damping performance of WADC designed by the conventional method may deteriorate or even has no effect when signal transmission delay is beyond delay margin, an index that denotes delay endurance degree of power system. Therefore, a new design method for WADC under the condition of expected damping factor and required signal transmission delay is presented in this work. An improved delay margin with less conservatism is derived by adopting a new Lyapunov-Krasovskii function and more compact bounding technique on the derivative of Lyapunov-Krasovskii functional. The improved delay margin, which constructs the correlation of damping factor and signal transmission delay, can be used to design WADC. WADC designed by the proposed method can ensure that power system satisfies expected damping factor when WADC input signal is delayed within delay margin. Satisfactory test results demonstrate the effectiveness of the proposed method.展开更多
In view of characteristics of solar photovoltaic (PV) power station such as the decentralized layout and massive monitoring and control information, a solar PV power generation monitoring and control system has been d...In view of characteristics of solar photovoltaic (PV) power station such as the decentralized layout and massive monitoring and control information, a solar PV power generation monitoring and control system has been designed. The system is designed into three layers namely the sensor and actuator layer, the PLC field monitoring and control layer and the remote network monitoring and control layer. Through ZigBee wireless network, PROFIBUS and GPRS wireless network, the system makes the three layers exchange information rapidly, and the system supervises not only various operational parameters of the power generating system but also weather changes as a way to change the solar tracking strategy of the PV power generating system and reduce the operating energy consumption of the system. Through the hardware redundant design of PLC central controller and the upper computer, the solar PV power station can be more secure and reliable when running.展开更多
A kind of dispatch method for power system eigenvalue control is proposed-in this paper. With the help of this method, not only the low-frequency oscillation of a power system can be prevented and controlled, but also...A kind of dispatch method for power system eigenvalue control is proposed-in this paper. With the help of this method, not only the low-frequency oscillation of a power system can be prevented and controlled, but also the probabilistic power oscillatoin on the interconnection lines of an interconnected power system can be reduced. The proposed method has the advantages of high calculation speed and good convergency. Therefore, the method has much prospect of on-line application.展开更多
This paper presents a new topology to implement Class F power amplifier for eliminating the on-resistance (R_(ON))effect.The time-domain and frequency-domain voltage and current waveforms for Class F amplifier are ana...This paper presents a new topology to implement Class F power amplifier for eliminating the on-resistance (R_(ON))effect.The time-domain and frequency-domain voltage and current waveforms for Class F amplifier are ana- lyzed using Fourier series analysis method.Considering the on-resistance effect,the formulas of the efficiency,output power,dc power dissipation,and fundamental load impedance are given from ideal current and voltage waveforms.For experimental verification,we designed and implemented a Class F power amplifier,which operates at 850 MHz using MGaAs/GaAs Heterostructure FET(HFET)device,and analyzed the measurement results.Test results show that the maximum PAE of 67% can be achieved at 28 dBm output power level.展开更多
This paper presents a novel transformer magnetic biasing control method for high-power high-performance AC power supplies. Serious consequences due to magnetic biasing and several methods to overcome magnetic biasing ...This paper presents a novel transformer magnetic biasing control method for high-power high-performance AC power supplies. Serious consequences due to magnetic biasing and several methods to overcome magnetic biasing are first discussed. The causes of the transformer magnetic biasing are then analyzed in detail. The proposed method is based on a high-pass filter inserted in the forward path and the feedforward control. Without testing magnetic biasing of transformer, this method can eliminate magnetic biasing of transformer completely in real-time waveform feedback control systems though the zero error of the Hall effect sensors varies with time and temperature. The method has already been employed in a 90KVA AC power supply. It is shown that it offers improved performance over existing ones. In this method, no sensors are used such that the zero error of the Hall effect sensors has not any influence on the system. It is simple to design and implement. Furthermore, the method is suitable for various power applications.展开更多
文摘Energy saving is the most important issue in research and development for wireless sensor networks. A power control mechanism can reduce the power consumption of the whole network. Because the character of wireless sensor networks is restrictive energy, this paper proposes a distributed power control algorithm based on game theory for wireless sensor networks which objects of which are reducing power consumption and decreasing overhead and increasing network lifetime. The game theory and OPNET simulation shows that the power control algorithm converges to a Nash Equilibrium when decisions are updated according to a better response dynamic.
基金the National Natural Science Foundation of China (60532030).
文摘When a new user accesses the CDMA system, the load will change drastically, and therefore, the advanced outer loop power control (OLPC) technology has to be adopted to enrich the target signal interference ratio (Silt) and improve the system performance. The existing problems about DS-CDMA outer loop power control for multi-service are introduced and the power control theoretical model is analyzed. System simulation is adopted on how to obtain the theoretical performance and parameter optimization of the power control algorithm. The OLPC algorithm is improved and the performance comparisons between the old algorithm and the improved algorithm are given. The results show good performance of the improved OLPC algorithm and prove the validity of the improved method for multi-service.
基金This project was supported by the National Natural Science Foundation of China ( 60496314).
文摘A low complexity Per-Antenna Power Control (PAPC) approach based on Minimum Mean Squared Error (MMSE) detection for V-BLAST is proposed in this paper. The PAPC approach is developed for minimizing the Bit Error Rate (BER) averaged over all substreams when the data throughput and the total transmit power keep constant over time. Simulation results show that the Power-controlled V-BLAST (P-BLAST) outperforms the conventional V-BLAST in terms of BER performance with MMSE detector, especially in presence of high spatial correlation between antennas. However, the additional complexity for P-BLAST is not high. When MMSE detector is adopted, the P-BLAST can achieve a comparable BER performance to that of conventional V-BLAST with Maximum Likelihood (ML) detector but with low complexity.
基金supported by the National Natural Science Foundation of China (61250005)Jiangxi Postdoctoral Science Foundation(2013KY07)
文摘A joint power control and relay selection scheme is considered for a cooperative and cognitive radio system where a secondary network shares spectrum with the primary network. In the secondary network, two secondary users (SUs) communicate with each other via an assist relay. The main point is to provide the best system performance to SUs while maintaining the interference power at primary user (PU) under a certain level. Using convex optimization, a closed-form solution is obtained when optimizing the power allocation among the two nodes and relay. Based on this result, a joint power control and relay selection scheme with fewer variable dimensions is proposed to maximize the achievable rate of the secondary system. Simulation results demonstrate that the sum rate of the cognitive two-way relay network increases compared with a random relay selection and fixed power allocation.
基金Project(61071104) supported by the National Natural Science Foundation of China
文摘Based on the analysis of the feature of cognitive radio networks, a relevant interference model was built. Cognitive users should consider especially the problem of interference with licensed users and satisfy the signal-to-interference noise ratio (SINR) requirement at the same time. According to different power thresholds, an approach was given to solve the problem of coexistence between licensed user and cognitive user in cognitive system. Then, an uplink distributed power control algorithm based on traditional iterative model was proposed. Convergence analysis of the algorithm in case of feasible systems was provided. Simulations show that this method can provide substantial power savings as compared with the power balancing algorithm while reducing the achieved SINR only slightly, since 6% S1NR loss can bring 23% power gain. Through further simulations, it can be concluded that the proposed solution has better effect as the noise power or system load increases.
基金supported by the Open Research Fund of National Mobile Communications Research Laboratory of Southeast University(N200904)the Nanjing University of Aeronautics and Astronautics (NUAA) Research Funding (NS2010113)the National Natural Science Foundation of China (61172077)
文摘Two optimal power control (PC) schemes under the power constraint for space-time coded multiple input multiple output systems over the flat Rayleigh fading channel with the imperfect channel state information (CSI) are presented. One is based on the minimization of a bit error rate (BER), and the other is based on the maximization of a fuzzy signal-to-noise ratio. In these schemes, different powers are allocated to individual transmit an- tennas rather than equal power in the conventional one. For the first scheme, the optimal PC procedure is developed. It is shown that the Lagrange multiplier for the constrained optimization in the power control does exist and is unique. A practical iterative algorithm based on Newton's method for finding the Lagrange multiplier is proposed. In the second scheme, some existing schemes are included, and a suboptimal PC procedure is developed by means of the asymptotic performance analysis. With this suboptimal scheme, a simple PC calculation formula is provided, and thus the calculation of the PC will be straightforward. Moreover, the suboptimal scheme has the BER performance close to the optimal scheme. Simulation results show that the two PC schemes can provide BER lower than the equal PC and antenna selection scheme under the imperfect CSI.
基金Supported by National Natural Science Foundation of P. R. China (60174017)
文摘A novel distributed power control algorithm based on interference estimation is presented for wireless cellular system. A classical result of stochastic approximation is applied in this scheme.The power control algorithm is converted to seeking for the zero point problem of a certain function.In this distributed power algorithm, each user iteratively updates its power level by estimating the interference. It does not require any knowledge of the channel gains or state information of other users. Hence, the proposed algorithm is robust. It is proved that the algorithm converges to the optimal solution by stochastic approximation approach.
基金supported by the National Natural Science Foundation of China (7070102571071105)+2 种基金the Program for New Century Excellent Talents in Universities of China (NCET-08-0396)the National Science Fund for Distinguished Young Scholars of China (70925005)the Program for Changjiang Scholars and Innovative Research Team in University (IRT/028)
文摘Power efficiency and link reliability are of great impor- tance in hierarchical wireless sensor networks (HWSNs), espe- cially at the key level, which consists of sensor nodes located only one hop away from the sink node called OHS. The power and admission control problem in HWSNs is comsidered to improve its power efficiency and link reliability. This problem is modeled as a non-cooperative game in which the active OHSs are con- sidered as players. By applying a double-pricing scheme in the definition of OHSs' utility function, a Nash Equilibrium solution with network properties is derived. Besides, a distributed algorithm is also proposed to show the dynamic processes to achieve Nash Equilibrium. Finally, the simulation results demonstrate the effec- tiveness of the proposed algorithm.
基金Project(51007042) supported by the National Natural Science Foundation of China
文摘Wide area damping controller(WADC) is usually utilized to damp interarea low frequency oscillation in power system. However, conventional WADC design method neglects the influence of signal transmission delay and damping performance of WADC designed by the conventional method may deteriorate or even has no effect when signal transmission delay is beyond delay margin, an index that denotes delay endurance degree of power system. Therefore, a new design method for WADC under the condition of expected damping factor and required signal transmission delay is presented in this work. An improved delay margin with less conservatism is derived by adopting a new Lyapunov-Krasovskii function and more compact bounding technique on the derivative of Lyapunov-Krasovskii functional. The improved delay margin, which constructs the correlation of damping factor and signal transmission delay, can be used to design WADC. WADC designed by the proposed method can ensure that power system satisfies expected damping factor when WADC input signal is delayed within delay margin. Satisfactory test results demonstrate the effectiveness of the proposed method.
基金sponsored by National Natural Science Foundation of China(50975020)National Major Program of Science and Tech-nique(2009ZX04014-101)Funding Project for Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing Municipalipality(PHR20090518)
文摘In view of characteristics of solar photovoltaic (PV) power station such as the decentralized layout and massive monitoring and control information, a solar PV power generation monitoring and control system has been designed. The system is designed into three layers namely the sensor and actuator layer, the PLC field monitoring and control layer and the remote network monitoring and control layer. Through ZigBee wireless network, PROFIBUS and GPRS wireless network, the system makes the three layers exchange information rapidly, and the system supervises not only various operational parameters of the power generating system but also weather changes as a way to change the solar tracking strategy of the PV power generating system and reduce the operating energy consumption of the system. Through the hardware redundant design of PLC central controller and the upper computer, the solar PV power station can be more secure and reliable when running.
文摘A kind of dispatch method for power system eigenvalue control is proposed-in this paper. With the help of this method, not only the low-frequency oscillation of a power system can be prevented and controlled, but also the probabilistic power oscillatoin on the interconnection lines of an interconnected power system can be reduced. The proposed method has the advantages of high calculation speed and good convergency. Therefore, the method has much prospect of on-line application.
文摘This paper presents a new topology to implement Class F power amplifier for eliminating the on-resistance (R_(ON))effect.The time-domain and frequency-domain voltage and current waveforms for Class F amplifier are ana- lyzed using Fourier series analysis method.Considering the on-resistance effect,the formulas of the efficiency,output power,dc power dissipation,and fundamental load impedance are given from ideal current and voltage waveforms.For experimental verification,we designed and implemented a Class F power amplifier,which operates at 850 MHz using MGaAs/GaAs Heterostructure FET(HFET)device,and analyzed the measurement results.Test results show that the maximum PAE of 67% can be achieved at 28 dBm output power level.
文摘This paper presents a novel transformer magnetic biasing control method for high-power high-performance AC power supplies. Serious consequences due to magnetic biasing and several methods to overcome magnetic biasing are first discussed. The causes of the transformer magnetic biasing are then analyzed in detail. The proposed method is based on a high-pass filter inserted in the forward path and the feedforward control. Without testing magnetic biasing of transformer, this method can eliminate magnetic biasing of transformer completely in real-time waveform feedback control systems though the zero error of the Hall effect sensors varies with time and temperature. The method has already been employed in a 90KVA AC power supply. It is shown that it offers improved performance over existing ones. In this method, no sensors are used such that the zero error of the Hall effect sensors has not any influence on the system. It is simple to design and implement. Furthermore, the method is suitable for various power applications.