The ReaxFF can describe the properties of energetic materials(EMs)at equilibrium state,but does not work properly in simulating high-energy particle irradiation process because of its weak short-range interaction.In t...The ReaxFF can describe the properties of energetic materials(EMs)at equilibrium state,but does not work properly in simulating high-energy particle irradiation process because of its weak short-range interaction.In this paper,a modification was made for such a potential by connecting ZieglerBiersack-Littmark(ZBL)potential to ReaxFF-lg through comparing to Density Functional Theory(DFT)results to accurately describe short-range interactions.After modification,the newly fitted ReaxFF-lg/ZBL potential predicts better the equation of state for EMs In displacement cascade simulations,comparing to results from ab initio molecular dynamics(AIMD),ReaxFF-lg/ZBL presented the similar transferred energy from a primary knock-on atom to surrounding atoms,better than the original ReaxFF-lg potential.Further large-scale displacement cascade simulations indicated ReaxFF-lg/ZBL could be applied for cascade simulations with PKA energy from less than 1 keV to high energy(e.g.35 keV)cases,which is suitable for effectively simulating high-energy displacement cascades in EMs using molecular dynamics method.展开更多
In this paper,adiabatic density surface,neutral density surface and potential density surface are compared.The adiabatic density surface is defined as the surface on which a water parcel can move adiabatically,without...In this paper,adiabatic density surface,neutral density surface and potential density surface are compared.The adiabatic density surface is defined as the surface on which a water parcel can move adiabatically,without changing its potential temperature and salinity.For a water parcel taken at a given station and pressure level,the corresponding adiabatic density surface can be determined through simple calculations.This family of surface is neutrally buoyant in the world ocean,and different from other surfaces that are not truly neutrally buoyant.In order to explore mixing path in the ocean,a mixing ratio m is introduced,which is defined as the portion of potential temperature and salinity of a water parcel that has exchanged with the environment during a segment of migration in the ocean.Two extreme situations of mixing path in the ocean are m=0(no mixing),which is represented by the adiabatic density curve,and m=1,where the original information is completely lost through mixing.The latter is represented by the neutral density curve.The reality lies in between,namely,0<m<1.In the turbulent ocean,there are potentially infinite mixing paths,some of which may be identified by using different tracers(or their combinations)and different mixing criteria.Searching for mixing paths in the real ocean presents a great challenge for further research.展开更多
基金the Natural Science Basic Research Program of Shaanxi(Grant No.2024JC-ZDXM-01)supported by the Youth Innovation Team of Shaanxi Universities(Title:Service Performance Evaluation of Energetic Materials)。
文摘The ReaxFF can describe the properties of energetic materials(EMs)at equilibrium state,but does not work properly in simulating high-energy particle irradiation process because of its weak short-range interaction.In this paper,a modification was made for such a potential by connecting ZieglerBiersack-Littmark(ZBL)potential to ReaxFF-lg through comparing to Density Functional Theory(DFT)results to accurately describe short-range interactions.After modification,the newly fitted ReaxFF-lg/ZBL potential predicts better the equation of state for EMs In displacement cascade simulations,comparing to results from ab initio molecular dynamics(AIMD),ReaxFF-lg/ZBL presented the similar transferred energy from a primary knock-on atom to surrounding atoms,better than the original ReaxFF-lg potential.Further large-scale displacement cascade simulations indicated ReaxFF-lg/ZBL could be applied for cascade simulations with PKA energy from less than 1 keV to high energy(e.g.35 keV)cases,which is suitable for effectively simulating high-energy displacement cascades in EMs using molecular dynamics method.
文摘In this paper,adiabatic density surface,neutral density surface and potential density surface are compared.The adiabatic density surface is defined as the surface on which a water parcel can move adiabatically,without changing its potential temperature and salinity.For a water parcel taken at a given station and pressure level,the corresponding adiabatic density surface can be determined through simple calculations.This family of surface is neutrally buoyant in the world ocean,and different from other surfaces that are not truly neutrally buoyant.In order to explore mixing path in the ocean,a mixing ratio m is introduced,which is defined as the portion of potential temperature and salinity of a water parcel that has exchanged with the environment during a segment of migration in the ocean.Two extreme situations of mixing path in the ocean are m=0(no mixing),which is represented by the adiabatic density curve,and m=1,where the original information is completely lost through mixing.The latter is represented by the neutral density curve.The reality lies in between,namely,0<m<1.In the turbulent ocean,there are potentially infinite mixing paths,some of which may be identified by using different tracers(or their combinations)and different mixing criteria.Searching for mixing paths in the real ocean presents a great challenge for further research.