Two cationic thermoresponsive stationary phases were designed and prepared containing poly [ N-isopropylacrylamide-co-( 2-dimethylamino ) ethylmethacrylate ] and poly [ N-isopropylacryl- amide-co-(2-diethylamino) ...Two cationic thermoresponsive stationary phases were designed and prepared containing poly [ N-isopropylacrylamide-co-( 2-dimethylamino ) ethylmethacrylate ] and poly [ N-isopropylacryl- amide-co-(2-diethylamino) ethylmethacrylate] via a simple method, the direct copolymerization of monomers with double bonds on silica surfaces. The two copolymers were synthesized by radical polymerization and then characterized using Fourier transform infrared and gel permeation chroma- tography. The thermoresponsive property and amounts of copolymers grafted on silica were deter- mined through transmittance measurements and thermogravimetric analysis, respectively. The copol- ymers grafted silica particles were then applied as high-performance liquid phase (HPLC) stationary phases for chromatographic separation. Chromatographic properties of mobile phases at different pH values were evaluated by changing temperatures and using benzene and hydrocortisone as the test an- alytes. Retention time of the analytes was prolonged with increasing temperature on both thermore- sponsive columns due to enhanced hydrophobic interaction between analytes and stationary phases. The resolution increased with increasing pH of mobile phase. The optimal separation was obtained at phosphate buffer solution ( 10 raM, pH 8. 0) and at 50 ℃. The pH of mobile phase had a crucial effect on separation efficiency. The results illustrated that poly( N-isopropylacrylamide-co-(2-diethyl- amino) ethylmethacrylate ] copolymer modified silica was more advantageous for the temperature-re- sponsive chromatographic separation because its lower critical solution temperature was relatively lower compared to the poly [ N-isopropylacrylamide-co-(2-dimethylamino) ethylmethacrylate ] sta- tionary phase.展开更多
Poly (acrylic acid) (PAA) chains are grafted on one side of a microcantilever by the self-assembled method and the deflections of the microcantilever are detected as a function of medium pH from 3 to 11. It is fou...Poly (acrylic acid) (PAA) chains are grafted on one side of a microcantilever by the self-assembled method and the deflections of the microcantilever are detected as a function of medium pH from 3 to 11. It is found that when the pH varies, the microcantilever deflects because of the changing surface stress. By analysing the electrostatic repulsive effect, the surface stress change is related to the conformation transition of PAA from a collapse state to a swelling state. This method offers the interaction information among the polymer chains during the conformational transition and affords an alternative way to study conformational change of polymers.展开更多
In oil and gas field, the application of kinetic hydrate inhibitors (KHIs) independently has remained problematic in high subcooling and high water-cut situation. One feasible method to resolve this problem is the c...In oil and gas field, the application of kinetic hydrate inhibitors (KHIs) independently has remained problematic in high subcooling and high water-cut situation. One feasible method to resolve this problem is the combined use of KHIs and some synergists, which would enhance KHIs’ inhibitory effect on both hydrate nucleation and hydrate crystal growth. In this study, a novel kind of KHI copolymer poly(N-vinyl-2-pyrrolidone-co-2-vinyl pyridine)s (HGs) is used in conjunction with TBAB to show its high performance on hydrate inhibition. The performance of HGs with different monomer ratios in structure II tetrahydrofuran (THF) hydrate is investigated using kinetic hydrate inhibitor evaluation apparatus by step-cooling method and isothermal cooling method. With the combined gas hydrate inhibitor at the concentration of 1.0 wt%, the induction time of 19 wt% THF solution could be prolonged to 8.5 h at a high subcooling of 6℃. Finally, the mechanism of HGs inhibiting the formation of gas hydrate is proposed.展开更多
Porous membranes were prepared using the phase inversion method from poly(vinylidene fluoride)-graftpoly(N-vinyl pyrrolidone)(PVDF-g-PVP) powders, which were synthesized via γ-ray induced graft polymerization(pre-irr...Porous membranes were prepared using the phase inversion method from poly(vinylidene fluoride)-graftpoly(N-vinyl pyrrolidone)(PVDF-g-PVP) powders, which were synthesized via γ-ray induced graft polymerization(pre-irradiation). Chemical compositions, thermal behavior, morphology and hydrophilicity of the membranes were characterized by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, element analysis, thermalgravimetric analysis, differential scanning calorimetry, scanning electron microscopy and contact angle measurements, respectively. Permeation experiments were conducted to evaluate the water flux,and the dynamic BSA fouling resistance performances were investigated, too. All the experimental results indicate that the PVDF-g-PVP membranes demonstrate better separation performances over the pristine PVDF membrane.展开更多
The temperature dependence of the specific refractive index increment d n /d c of aqueous poly( N isopropylacrylamide) solution in the range of 20 ℃ to 35 ℃ were determined by a differential refractometer. The measu...The temperature dependence of the specific refractive index increment d n /d c of aqueous poly( N isopropylacrylamide) solution in the range of 20 ℃ to 35 ℃ were determined by a differential refractometer. The measured d n /d c of the solution decreases regularly and smoothly with increasing temperature until to the specific coil globule transition temperature of PNIPAM (around 32 ℃) and afterwards it increases with increasing temperature on the contrary. This extraordinary phenomenon is successfully explained and treated by a quantitative theory in terms of accompanying solvation desolvation process in the course of coil globule transition of the polymer chain in solution.展开更多
基金Supported by the National Natural Science Foundation of China(20675008)
文摘Two cationic thermoresponsive stationary phases were designed and prepared containing poly [ N-isopropylacrylamide-co-( 2-dimethylamino ) ethylmethacrylate ] and poly [ N-isopropylacryl- amide-co-(2-diethylamino) ethylmethacrylate] via a simple method, the direct copolymerization of monomers with double bonds on silica surfaces. The two copolymers were synthesized by radical polymerization and then characterized using Fourier transform infrared and gel permeation chroma- tography. The thermoresponsive property and amounts of copolymers grafted on silica were deter- mined through transmittance measurements and thermogravimetric analysis, respectively. The copol- ymers grafted silica particles were then applied as high-performance liquid phase (HPLC) stationary phases for chromatographic separation. Chromatographic properties of mobile phases at different pH values were evaluated by changing temperatures and using benzene and hydrocortisone as the test an- alytes. Retention time of the analytes was prolonged with increasing temperature on both thermore- sponsive columns due to enhanced hydrophobic interaction between analytes and stationary phases. The resolution increased with increasing pH of mobile phase. The optimal separation was obtained at phosphate buffer solution ( 10 raM, pH 8. 0) and at 50 ℃. The pH of mobile phase had a crucial effect on separation efficiency. The results illustrated that poly( N-isopropylacrylamide-co-(2-diethyl- amino) ethylmethacrylate ] copolymer modified silica was more advantageous for the temperature-re- sponsive chromatographic separation because its lower critical solution temperature was relatively lower compared to the poly [ N-isopropylacrylamide-co-(2-dimethylamino) ethylmethacrylate ] sta- tionary phase.
基金Supported by the National Natural Science Foundation of China under Grant Nos 20674078, 10627201, 10472111 and 10472112, and the Doctorial Programme of the Ministry of Education of China under Grant No 20040358027.
文摘Poly (acrylic acid) (PAA) chains are grafted on one side of a microcantilever by the self-assembled method and the deflections of the microcantilever are detected as a function of medium pH from 3 to 11. It is found that when the pH varies, the microcantilever deflects because of the changing surface stress. By analysing the electrostatic repulsive effect, the surface stress change is related to the conformation transition of PAA from a collapse state to a swelling state. This method offers the interaction information among the polymer chains during the conformational transition and affords an alternative way to study conformational change of polymers.
基金supported by the National Basic Research Program of China ("973" Program) (Grant No. 2009CB219504-03)the National Natural Science Foundation of China (Grant No 51106054)the Colleges and Universities High-level Talents Program of Guangdong
文摘In oil and gas field, the application of kinetic hydrate inhibitors (KHIs) independently has remained problematic in high subcooling and high water-cut situation. One feasible method to resolve this problem is the combined use of KHIs and some synergists, which would enhance KHIs’ inhibitory effect on both hydrate nucleation and hydrate crystal growth. In this study, a novel kind of KHI copolymer poly(N-vinyl-2-pyrrolidone-co-2-vinyl pyridine)s (HGs) is used in conjunction with TBAB to show its high performance on hydrate inhibition. The performance of HGs with different monomer ratios in structure II tetrahydrofuran (THF) hydrate is investigated using kinetic hydrate inhibitor evaluation apparatus by step-cooling method and isothermal cooling method. With the combined gas hydrate inhibitor at the concentration of 1.0 wt%, the induction time of 19 wt% THF solution could be prolonged to 8.5 h at a high subcooling of 6℃. Finally, the mechanism of HGs inhibiting the formation of gas hydrate is proposed.
基金Supported by the Shanghai Municipal Science and Technology Committee(No.08231200300)
文摘Porous membranes were prepared using the phase inversion method from poly(vinylidene fluoride)-graftpoly(N-vinyl pyrrolidone)(PVDF-g-PVP) powders, which were synthesized via γ-ray induced graft polymerization(pre-irradiation). Chemical compositions, thermal behavior, morphology and hydrophilicity of the membranes were characterized by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, element analysis, thermalgravimetric analysis, differential scanning calorimetry, scanning electron microscopy and contact angle measurements, respectively. Permeation experiments were conducted to evaluate the water flux,and the dynamic BSA fouling resistance performances were investigated, too. All the experimental results indicate that the PVDF-g-PVP membranes demonstrate better separation performances over the pristine PVDF membrane.
文摘The temperature dependence of the specific refractive index increment d n /d c of aqueous poly( N isopropylacrylamide) solution in the range of 20 ℃ to 35 ℃ were determined by a differential refractometer. The measured d n /d c of the solution decreases regularly and smoothly with increasing temperature until to the specific coil globule transition temperature of PNIPAM (around 32 ℃) and afterwards it increases with increasing temperature on the contrary. This extraordinary phenomenon is successfully explained and treated by a quantitative theory in terms of accompanying solvation desolvation process in the course of coil globule transition of the polymer chain in solution.