Objective:The neurotoxicity of carbon monoxide(CO)to the central nervous system is a key pathogenesis of delayed encephalopathy after acute carbon monoxide poisoning(DEACMP).Our previous study found that retinoic acid...Objective:The neurotoxicity of carbon monoxide(CO)to the central nervous system is a key pathogenesis of delayed encephalopathy after acute carbon monoxide poisoning(DEACMP).Our previous study found that retinoic acid(RA)can suppress the neurotoxic effects of CO.This study further explores,in vivo and in vitro,the molecular mechanisms by which RA alleviates CO-induced central nervous system damage.Methods:A cytotoxic model was established using the mouse hippocampal neuronal cell line HT22 and primary oligodendrocytes exposed to CO,and a DEACMP animal model was established in adult Kunming mice.Cell viability and apoptosis of hippocampal neurons and oligodendrocytes were assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT)assay and Annexin V/propidium iodide(PI)double staining.The transcriptional and protein expression of each gene was detected using real time fluorescence quantitative PCR(RT-qPCR)and Western blotting.Long noncoding RNA(lncRNA)SNHG15 and LINGO-1 were knocked down or overexpressed to observe changes in neurons and oligodendrocytes.In DEACMP mice,SNHG15 or LINGO-1 were knocked down to assess changes in central nervous tissue and downstream protein expression.Results:RA at 10 and 20μmol/L significantly reversed CO-induced apoptosis of hippocampal neurons and oligodendrocytes,downregulation of SNHG15 and LINGO-1,and upregulation of brain-derived neurotrophic factor(BDNF)and tyrosine kinase receptor B(TrkB)(all P<0.05).Overexpression of SNHG15 or LINGO-1 weakened the protective effect of RA against CO-induced cytotoxicity(all P<0.05).Knockdown of SNHG15 or LINGO-1 alleviated CO-induced apoptosis of hippocampal neurons and oligodendrocytes and upregulated BDNF and TrkB expression levels(all P<0.05).Experiments in DEACMP model mice showed that knockdown of SNHG15 or LINGO-1 mitigated central nervous system injury in DEACMP(all P<0.05).Conclusion:RA alleviates CO-induced apoptosis of hippocampal neurons and oligodendrocytes,thereby reducing central nervous system injury and exerting neuroprotective effects.LncRNA SNHG15 and LINGO-1 are key molecules mediating RA induced inhibition of neuronal apoptosis and are associated with the BDNF/TrkB pathway.These findings provide a theoretical framework for optimizing the clinical treatment of DEACMP and lay an experimental foundation for elucidating its molecular mechanisms.展开更多
The mechanism of zirconium poisoning on the grain-refining efficiency of an Al-Ti-B based grain refiner was studied. The experiment was conducted by melting Al-5Ti-1B and Al-3Zr master alloys together. The edge-to-edg...The mechanism of zirconium poisoning on the grain-refining efficiency of an Al-Ti-B based grain refiner was studied. The experiment was conducted by melting Al-5Ti-1B and Al-3Zr master alloys together. The edge-to-edge matching model was used to investigate and compare the orientation relationships between the binary intermetallic compounds present in the Al-Ti-B-Zr system. The results show that the poisoning effect probably results from the combination of Al3 Zr with Al3 Ti and the decreased amount of Ti solute, for Al3 Ti particles have good crystallographic relationships with Al3 Zr. Totally six orientation relationships may present between them, while they play vital roles in grain refinement. TiB2 particles appear to remain unchanged because of a bit large misfit. Only one orientation relationship may present between them to prevent Al3 Zr phase from forming on the surface of TiB2, though TiB2 is agglomerated. The theoretical calculation agrees well with the experimental results. The edge-to-edge matching model is proved to be a useful tool for discovering the orientation relationships between phases.展开更多
Combining a detailed catalytic surface reaction mechanism with noble metal and promoter elementary reactions, a new three-way catalytic converter(TWC) reaction mechanism is established. Based on the new mechanism, ste...Combining a detailed catalytic surface reaction mechanism with noble metal and promoter elementary reactions, a new three-way catalytic converter(TWC) reaction mechanism is established. Based on the new mechanism, steady condition numerical simulation is carried out, and the change of light-off temperatures and conversion efficiency with various SO2 contents is obtained. By grey relational analysis(GRA), the relational grade between conversion efficiency and SO2 content is obtained. And, the result shows that SO2 content has the most important influence on C3H6 and NOX conversion efficiency. This provides an important reference to the improvement of activity design of TWC, and may provide guidance for the condition design and optimization of TWC.展开更多
Solid oxide cells(SOCs)are emerging devices for efficient energy storage and conversion.However,during SOC operation,gaseous chromium(Cr)species released from Fe-Cr alloy interconnect can lead to Cr deposition and poi...Solid oxide cells(SOCs)are emerging devices for efficient energy storage and conversion.However,during SOC operation,gaseous chromium(Cr)species released from Fe-Cr alloy interconnect can lead to Cr deposition and poisoning of air electrodes,causing substantial degradation in electrochemical performance and compromising the longterm stability of SOCs.This mini-review examines the mechanism of Cr deposition and poisoning in air electrodes under both fuel-cell and electrolysis modes.Furthermore,emphasis is placed on the recent advancements in strategies to mitigate Cr poisoning,offering insights into the rational design and development of active and Cr-tolerant air electrodes for SOCs.展开更多
Lithium-sulfur(Li-S)batteries have great promise for next-generation energy storage devices due to the high theoretical specific capacity(1675 mAh g^(-1))of sulfur with chemical conversion for charge storage.However,t...Lithium-sulfur(Li-S)batteries have great promise for next-generation energy storage devices due to the high theoretical specific capacity(1675 mAh g^(-1))of sulfur with chemical conversion for charge storage.However,their practical use is hindered by the slow redox kinetics of sulfur and the“shuttle effect”arising from dissolved lithium polysulfides(LiPSs).In recent years,various carbon-based materials have served as sulfur hosts and catalysts for accelerating sulfur conversion redox kinetics and alleviating LiPS shuttling.However,they often suffer from irreversible passivation and structural changes that destroy their long-term performance.We consider the main problems limiting their stability,including excessive LiPS adsorption,passivation by insulating Li2S,and surface reconstruction,and clarify how these factors lead to capacity fade.We then outline effective strategies for achieving long-term sulfur catalysis,focusing on functional carbon,such as designing suitable carbon-supported catalyst interfaces,creating well-distributed active sites,adding cocatalysts to improve electron transfer,and using carbon-based protective layers to suppress unwanted side reactions.Using this information should enable the development of stable,high-activity catalysts capable of long-term operation under practical conditions in Li-S batteries.展开更多
基金supported by the Natural Science Foundation of Hunan Province(2021JJ31089)the Scientific Research Project of Health Commission of Hunan Province(202203104548),China。
文摘Objective:The neurotoxicity of carbon monoxide(CO)to the central nervous system is a key pathogenesis of delayed encephalopathy after acute carbon monoxide poisoning(DEACMP).Our previous study found that retinoic acid(RA)can suppress the neurotoxic effects of CO.This study further explores,in vivo and in vitro,the molecular mechanisms by which RA alleviates CO-induced central nervous system damage.Methods:A cytotoxic model was established using the mouse hippocampal neuronal cell line HT22 and primary oligodendrocytes exposed to CO,and a DEACMP animal model was established in adult Kunming mice.Cell viability and apoptosis of hippocampal neurons and oligodendrocytes were assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT)assay and Annexin V/propidium iodide(PI)double staining.The transcriptional and protein expression of each gene was detected using real time fluorescence quantitative PCR(RT-qPCR)and Western blotting.Long noncoding RNA(lncRNA)SNHG15 and LINGO-1 were knocked down or overexpressed to observe changes in neurons and oligodendrocytes.In DEACMP mice,SNHG15 or LINGO-1 were knocked down to assess changes in central nervous tissue and downstream protein expression.Results:RA at 10 and 20μmol/L significantly reversed CO-induced apoptosis of hippocampal neurons and oligodendrocytes,downregulation of SNHG15 and LINGO-1,and upregulation of brain-derived neurotrophic factor(BDNF)and tyrosine kinase receptor B(TrkB)(all P<0.05).Overexpression of SNHG15 or LINGO-1 weakened the protective effect of RA against CO-induced cytotoxicity(all P<0.05).Knockdown of SNHG15 or LINGO-1 alleviated CO-induced apoptosis of hippocampal neurons and oligodendrocytes and upregulated BDNF and TrkB expression levels(all P<0.05).Experiments in DEACMP model mice showed that knockdown of SNHG15 or LINGO-1 mitigated central nervous system injury in DEACMP(all P<0.05).Conclusion:RA alleviates CO-induced apoptosis of hippocampal neurons and oligodendrocytes,thereby reducing central nervous system injury and exerting neuroprotective effects.LncRNA SNHG15 and LINGO-1 are key molecules mediating RA induced inhibition of neuronal apoptosis and are associated with the BDNF/TrkB pathway.These findings provide a theoretical framework for optimizing the clinical treatment of DEACMP and lay an experimental foundation for elucidating its molecular mechanisms.
基金Project(2012CB619504) supported by the National Basic Research Program of China
文摘The mechanism of zirconium poisoning on the grain-refining efficiency of an Al-Ti-B based grain refiner was studied. The experiment was conducted by melting Al-5Ti-1B and Al-3Zr master alloys together. The edge-to-edge matching model was used to investigate and compare the orientation relationships between the binary intermetallic compounds present in the Al-Ti-B-Zr system. The results show that the poisoning effect probably results from the combination of Al3 Zr with Al3 Ti and the decreased amount of Ti solute, for Al3 Ti particles have good crystallographic relationships with Al3 Zr. Totally six orientation relationships may present between them, while they play vital roles in grain refinement. TiB2 particles appear to remain unchanged because of a bit large misfit. Only one orientation relationship may present between them to prevent Al3 Zr phase from forming on the surface of TiB2, though TiB2 is agglomerated. The theoretical calculation agrees well with the experimental results. The edge-to-edge matching model is proved to be a useful tool for discovering the orientation relationships between phases.
基金Project(2009CK2001) supported by the Science & Technology Development Key Program of Hunan Province STA of ChinaProject supported by the Young Teachers Program of Hunan University,China
文摘Combining a detailed catalytic surface reaction mechanism with noble metal and promoter elementary reactions, a new three-way catalytic converter(TWC) reaction mechanism is established. Based on the new mechanism, steady condition numerical simulation is carried out, and the change of light-off temperatures and conversion efficiency with various SO2 contents is obtained. By grey relational analysis(GRA), the relational grade between conversion efficiency and SO2 content is obtained. And, the result shows that SO2 content has the most important influence on C3H6 and NOX conversion efficiency. This provides an important reference to the improvement of activity design of TWC, and may provide guidance for the condition design and optimization of TWC.
文摘为评估寒地池塘养殖中华绒螯蟹(Eriocheir sinensis,俗称“河蟹”)和克氏原螯虾(Procambarus clarkia,俗称“小龙虾”)的营养品质与有毒重金属风险,在相似的养殖环境下,通过解剖、生化组成分析、面积归一化法、电感耦合等离子体质谱法测定河蟹和小龙虾的可食率、常规营养成分(水分、粗蛋白质、总脂和灰分)、脂肪酸、矿物质元素和有毒重金属(镉Cd、铬Cr、汞Hg和铅Pb)含量。结果表明:河蟹的平均体质量(body weight,BW)、性腺指数(gonadosomatic index,GSI)、出肉率(meat yield,MY)和总可食率(total edible yield,TEY)均极显著高于小龙虾(P<0.01);河蟹肝胰腺水分和粗蛋白质含量极显著高于小龙虾,而肌肉粗蛋白质含量则极显著低于小龙虾(P<0.01);河蟹总饱和脂肪酸(the sum of saturated fatty acid,∑SFA)、C18:3n3(LNA)、C22:6n3(DHA)、∑n-3 PUFA含量极显著低于小龙虾(P<0.01),而总多不饱和脂肪酸(the sum of polyunsaturated fatty acids,∑PUFAs)则极显著高于小龙虾(P<0.01);河蟹肝胰腺中含有更高的钠Na、钙Ca、锌Zn、铜Cu和元素总量,更低的铁Fe和锰Mn元素;肌肉中则含有更高的Na、Ca、Fe、Zn、Cu、Mn、Se和元素总量,更低的钾K元素(P<0.01);小龙虾肝胰腺和肌肉中Cd、Cr、Hg和Pb有毒重金属元素含量略高于河蟹;研究显示,河蟹具有更高的BW、GSI、MY、TEY、∑PUFA、Na、Ca、Zn、Cu和元素总量,以及肝胰腺中粗蛋白质含量;小龙虾可食组织则具有更高的C18:3n3(LNA)、C22:6n3(DHA)和K元素含量,以及肌肉中粗蛋白含量。研究表明,寒地池塘河蟹和小龙虾可食组织的有毒重金属含量均低于国家标准,是安全的水产食品来源。
基金supported by National Natural Science Foundation of China(22279018)National Natural Science Foundation of China(22005055)Natural Science Foundation of Fujian Province(2022J01085).
文摘Solid oxide cells(SOCs)are emerging devices for efficient energy storage and conversion.However,during SOC operation,gaseous chromium(Cr)species released from Fe-Cr alloy interconnect can lead to Cr deposition and poisoning of air electrodes,causing substantial degradation in electrochemical performance and compromising the longterm stability of SOCs.This mini-review examines the mechanism of Cr deposition and poisoning in air electrodes under both fuel-cell and electrolysis modes.Furthermore,emphasis is placed on the recent advancements in strategies to mitigate Cr poisoning,offering insights into the rational design and development of active and Cr-tolerant air electrodes for SOCs.
文摘Lithium-sulfur(Li-S)batteries have great promise for next-generation energy storage devices due to the high theoretical specific capacity(1675 mAh g^(-1))of sulfur with chemical conversion for charge storage.However,their practical use is hindered by the slow redox kinetics of sulfur and the“shuttle effect”arising from dissolved lithium polysulfides(LiPSs).In recent years,various carbon-based materials have served as sulfur hosts and catalysts for accelerating sulfur conversion redox kinetics and alleviating LiPS shuttling.However,they often suffer from irreversible passivation and structural changes that destroy their long-term performance.We consider the main problems limiting their stability,including excessive LiPS adsorption,passivation by insulating Li2S,and surface reconstruction,and clarify how these factors lead to capacity fade.We then outline effective strategies for achieving long-term sulfur catalysis,focusing on functional carbon,such as designing suitable carbon-supported catalyst interfaces,creating well-distributed active sites,adding cocatalysts to improve electron transfer,and using carbon-based protective layers to suppress unwanted side reactions.Using this information should enable the development of stable,high-activity catalysts capable of long-term operation under practical conditions in Li-S batteries.