期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Exploiting Geo-Social Correlations to Improve Pairwise Ranking for Point-of-Interest Recommendation 被引量:9
1
作者 Rong Gao Jing Li +4 位作者 Bo Du Xuefei Li Jun Chang Chengfang Song Donghua Liu 《China Communications》 SCIE CSCD 2018年第7期180-201,共22页
Recently, as location-based social network(LBSN) rapidly grow, point-of-interest(POI) recommendation has become an important way to help people locate interesting places. Nowadays, there have been deep studies conduct... Recently, as location-based social network(LBSN) rapidly grow, point-of-interest(POI) recommendation has become an important way to help people locate interesting places. Nowadays, there have been deep studies conducted on the geographical and social influence in the point-of-interest recommendation model based on the rating prediction. The fact is, however, relying solely on the rating fails to reflect the user's preferences very accurately, because the users are most concerned with the list of ranked point-of-interests(POIs) on the actual output of recommender systems. In this paper, we propose a co-pairwise ranking model called Geo-Social Bayesian Personalized Ranking model(GSBPR), which is based on the pairwise ranking with the exploiting geo-social correlations by incorporating the method of ranking learning into the process of POI recommendation. In this model, we develop a novel BPR pairwise ranking assumption by injecting users' geo-social preference. Based on this assumption, the POI recommendation model is reformulated by a three-level joint pairwise ranking model. And the experimental results based on real datasets show that the proposed method in this paper enjoys better recommendation performance compared to other state-of-the-art POI recommendation models. 展开更多
关键词 location-based social network(LBSN)point-of-interestpoirecommendation geographical influence social influence Bayesian personalized ranking(BPR)
在线阅读 下载PDF
基于时空上下文信息的POI推荐模型研究 被引量:3
2
作者 叶继华 杨思渝 +1 位作者 左家莉 王明文 《电子与信息学报》 EI CSCD 北大核心 2021年第12期3546-3553,共8页
随着基于位置的社交网络(LBSN)技术的快速发展,为移动用户提供个性化服务的兴趣点(POI)推荐成为关注重点。由于POI推荐面临着数据稀疏、影响因素多和用户偏好复杂的挑战,因此传统的POI推荐往往只考虑签到频率以及签到时间和地点对用户... 随着基于位置的社交网络(LBSN)技术的快速发展,为移动用户提供个性化服务的兴趣点(POI)推荐成为关注重点。由于POI推荐面临着数据稀疏、影响因素多和用户偏好复杂的挑战,因此传统的POI推荐往往只考虑签到频率以及签到时间和地点对用户的影响,而忽略了签到序列中用户前后行为的关联影响。为了解决上述问题,该文通过序列的表示考虑签到数据的时间影响和空间影响,建立了时空上下文信息的POI推荐模型(STCPR),为POI推荐提供了更精准的个性化偏好。该模型基于序列到序列的框架下,将用户信息、POI信息、类别信息和时空上下文信息进行向量化后嵌入GRU网络中,同时利用了时间注意力机制、全局和局部的空间注意力机制来综合考虑用户偏好与变化趋势,从而向用户推荐感兴趣的Top-N的POI。该文通过在两个真实的数据集上实验来验证模型的性能。实验的结果表明,该文所提出的方法在召回率(Recall)和归一化折损累计增益(NDCG)方面优于几种现有的方法。 展开更多
关键词 兴趣点推荐模型 时空相关性 上下文 注意力机制
在线阅读 下载PDF
一种基于用户空间相似性的兴趣点推荐算法 被引量:2
3
作者 李华孝杨 徐青 +1 位作者 冯世盛 武蓓蓓 《信息工程大学学报》 2022年第3期320-325,共6页
位置社交网络(Location Based Social Network,LBSN)的发展,为兴趣点推荐提供丰富的数据资源。基于地理影响的推荐算法是兴趣点推荐的热门研究话题,而现有的推荐算法缺乏对用户个性化行为的分析。因此,提出一种基于用户空间相似性的兴... 位置社交网络(Location Based Social Network,LBSN)的发展,为兴趣点推荐提供丰富的数据资源。基于地理影响的推荐算法是兴趣点推荐的热门研究话题,而现有的推荐算法缺乏对用户个性化行为的分析。因此,提出一种基于用户空间相似性的兴趣点推荐算法。首先,利用用户签到数据构建空间分布相似性模型;其次,引入削减因子,提高具有相同签到记录的用户权重;最后,线性融合用户及空间分布性相似性模型对Top-N兴趣点进行推荐,并进行实验验证。实验结果表明,该算法有效提高了兴趣点推荐的质量。 展开更多
关键词 兴趣点推荐 空间相似性度量模型 KANN-DBSACN LBSN
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部