In view of the limitations of traditional measurement methods in the field of building information,such as complex operation,low timeliness and poor accuracy,a new way of combining three-dimensional scanning technolog...In view of the limitations of traditional measurement methods in the field of building information,such as complex operation,low timeliness and poor accuracy,a new way of combining three-dimensional scanning technology and BIM(Building Information Modeling)model was discussed.Focused on the efficient acquisition of building geometric information using the fast-developing 3D point cloud technology,an improved deep learning-based 3D point cloud recognition method was proposed.The method optimised the network structure based on RandLA-Net to adapt to the large-scale point cloud processing requirements,while the semantic and instance features of the point cloud were integrated to significantly improve the recognition accuracy and provide a precise basis for BIM model remodeling.In addition,a visual BIM model generation system was developed,which systematically transformed the point cloud recognition results into BIM component parameters,automatically constructed BIM models,and promoted the open sharing and secondary development of models.The research results not only effectively promote the automation process of converting 3D point cloud data to refined BIM models,but also provide important technical support for promoting building informatisation and accelerating the construction of smart cities,showing a wide range of application potential and practical value.展开更多
针对菇房内杏鲍菇表型参数测量任务中,由于扫描设备视角受限,扫描的杏鲍菇点云出现残缺问题,基于AdaPoinTr(Adaptive geometry-aware point transformers)提出了改进的SwinPoinTr模型,实现了对残缺杏鲍菇点云的准确补全和杏鲍菇表型参...针对菇房内杏鲍菇表型参数测量任务中,由于扫描设备视角受限,扫描的杏鲍菇点云出现残缺问题,基于AdaPoinTr(Adaptive geometry-aware point transformers)提出了改进的SwinPoinTr模型,实现了对残缺杏鲍菇点云的准确补全和杏鲍菇表型参数的测量。该方法在使用提出的特征重塑模块的基础上,构建具有几何感知能力的层次化Transformer编码模块,提高了模型对输入点云的利用率和模型捕捉点云细节特征的能力。然后基于泊松重建方法完成了补全点云表面重建,并测量到杏鲍菇表型参数。实验结果表明,本文所提算法在残缺杏鲍菇点云补全任务中,模型倒角距离为1.316×10^(-4),地球移动距离为21.3282,F1分数为87.87%。在表型参数估测任务中,模型对杏鲍菇菌高、体积、表面积估测结果的决定系数分别为0.9582、0.9596、0.9605,均方根误差分别为4.4213 mm、10.8185 cm^(3)、7.5778 cm^(2)。结果证实了该研究方法可以有效地补全残缺的杏鲍菇点云,可以为菇房内杏鲍菇表型参数测量提供基础。展开更多
Swarm robot systems are an important application of autonomous unmanned surface vehicles on water surfaces.For monitoring natural environments and conducting security activities within a certain range using a surface ...Swarm robot systems are an important application of autonomous unmanned surface vehicles on water surfaces.For monitoring natural environments and conducting security activities within a certain range using a surface vehicle,the swarm robot system is more efficient than the operation of a single object as the former can reduce cost and save time.It is necessary to detect adjacent surface obstacles robustly to operate a cluster of unmanned surface vehicles.For this purpose,a LiDAR(light detection and ranging)sensor is used as it can simultaneously obtain 3D information for all directions,relatively robustly and accurately,irrespective of the surrounding environmental conditions.Although the GPS(global-positioning-system)error range exists,obtaining measurements of the surface-vessel position can still ensure stability during platoon maneuvering.In this study,a three-layer convolutional neural network is applied to classify types of surface vehicles.The aim of this approach is to redefine the sparse 3D point cloud data as 2D image data with a connotative meaning and subsequently utilize this transformed data for object classification purposes.Hence,we have proposed a descriptor that converts the 3D point cloud data into 2D image data.To use this descriptor effectively,it is necessary to perform a clustering operation that separates the point clouds for each object.We developed voxel-based clustering for the point cloud clustering.Furthermore,using the descriptor,3D point cloud data can be converted into a 2D feature image,and the converted 2D image is provided as an input value to the network.We intend to verify the validity of the proposed 3D point cloud feature descriptor by using experimental data in the simulator.Furthermore,we explore the feasibility of real-time object classification within this framework.展开更多
输电线路的关键部位包括塔身、导线、绝缘子、避雷线以及引流线,无人机精细化导航的首要任务是构造输电线路的点云地图并从中分割出上述部位。为解决现有算法在输电线路的绝缘子、引流线等精细结构分割时精度低的问题,通过改进PointNet+...输电线路的关键部位包括塔身、导线、绝缘子、避雷线以及引流线,无人机精细化导航的首要任务是构造输电线路的点云地图并从中分割出上述部位。为解决现有算法在输电线路的绝缘子、引流线等精细结构分割时精度低的问题,通过改进PointNet++算法,提出了一种面向输电线路精细结构的点云分割方法。首先,基于无人机机载激光雷达在现场采集的点云数据,构造了输电线路点云分割数据集;其次,通过对比实验,筛选出在本输电线路场景下合理的数据增强方法,并对数据集进行了数据增强;最后,将自注意力机制以及倒置残差结构和PointNet++相结合,设计了输电线路关键部位点云语义分割算法。实验结果表明:该改进PointNet++算法在全场景输电线路现场点云数据作为输入的前提下,首次实现了对引流线、绝缘子等输电线路中精细结构和导线、杆塔塔身以及输电线路无关背景点的同时分割,平均交并比(mean intersection over union,mIoU)达80.79%,所有类别分割的平均F_(1)值(F1 score)达88.99%。展开更多
文摘In view of the limitations of traditional measurement methods in the field of building information,such as complex operation,low timeliness and poor accuracy,a new way of combining three-dimensional scanning technology and BIM(Building Information Modeling)model was discussed.Focused on the efficient acquisition of building geometric information using the fast-developing 3D point cloud technology,an improved deep learning-based 3D point cloud recognition method was proposed.The method optimised the network structure based on RandLA-Net to adapt to the large-scale point cloud processing requirements,while the semantic and instance features of the point cloud were integrated to significantly improve the recognition accuracy and provide a precise basis for BIM model remodeling.In addition,a visual BIM model generation system was developed,which systematically transformed the point cloud recognition results into BIM component parameters,automatically constructed BIM models,and promoted the open sharing and secondary development of models.The research results not only effectively promote the automation process of converting 3D point cloud data to refined BIM models,but also provide important technical support for promoting building informatisation and accelerating the construction of smart cities,showing a wide range of application potential and practical value.
基金supported by the Future Challenge Program through the Agency for Defense Development funded by the Defense Acquisition Program Administration (No.UC200015RD)。
文摘Swarm robot systems are an important application of autonomous unmanned surface vehicles on water surfaces.For monitoring natural environments and conducting security activities within a certain range using a surface vehicle,the swarm robot system is more efficient than the operation of a single object as the former can reduce cost and save time.It is necessary to detect adjacent surface obstacles robustly to operate a cluster of unmanned surface vehicles.For this purpose,a LiDAR(light detection and ranging)sensor is used as it can simultaneously obtain 3D information for all directions,relatively robustly and accurately,irrespective of the surrounding environmental conditions.Although the GPS(global-positioning-system)error range exists,obtaining measurements of the surface-vessel position can still ensure stability during platoon maneuvering.In this study,a three-layer convolutional neural network is applied to classify types of surface vehicles.The aim of this approach is to redefine the sparse 3D point cloud data as 2D image data with a connotative meaning and subsequently utilize this transformed data for object classification purposes.Hence,we have proposed a descriptor that converts the 3D point cloud data into 2D image data.To use this descriptor effectively,it is necessary to perform a clustering operation that separates the point clouds for each object.We developed voxel-based clustering for the point cloud clustering.Furthermore,using the descriptor,3D point cloud data can be converted into a 2D feature image,and the converted 2D image is provided as an input value to the network.We intend to verify the validity of the proposed 3D point cloud feature descriptor by using experimental data in the simulator.Furthermore,we explore the feasibility of real-time object classification within this framework.
文摘输电线路的关键部位包括塔身、导线、绝缘子、避雷线以及引流线,无人机精细化导航的首要任务是构造输电线路的点云地图并从中分割出上述部位。为解决现有算法在输电线路的绝缘子、引流线等精细结构分割时精度低的问题,通过改进PointNet++算法,提出了一种面向输电线路精细结构的点云分割方法。首先,基于无人机机载激光雷达在现场采集的点云数据,构造了输电线路点云分割数据集;其次,通过对比实验,筛选出在本输电线路场景下合理的数据增强方法,并对数据集进行了数据增强;最后,将自注意力机制以及倒置残差结构和PointNet++相结合,设计了输电线路关键部位点云语义分割算法。实验结果表明:该改进PointNet++算法在全场景输电线路现场点云数据作为输入的前提下,首次实现了对引流线、绝缘子等输电线路中精细结构和导线、杆塔塔身以及输电线路无关背景点的同时分割,平均交并比(mean intersection over union,mIoU)达80.79%,所有类别分割的平均F_(1)值(F1 score)达88.99%。