针对平面高斯神经(Plane-Gaussian,PG)网络采用k-平面聚类算法得到网络参数,使得网络训练时间过长,且易陷入局部极小值的问题,借鉴极限学习机(Extreme learning machine,ELM)中网络参数随机选择的方式,提出了随机投影下的平面高斯神经网...针对平面高斯神经(Plane-Gaussian,PG)网络采用k-平面聚类算法得到网络参数,使得网络训练时间过长,且易陷入局部极小值的问题,借鉴极限学习机(Extreme learning machine,ELM)中网络参数随机选择的方式,提出了随机投影下的平面高斯神经网络(Plane-Gaussian network based on random projection,RandPG)。该网络采用随机投影的方式确定隐层激活函数的参数,然后利用Moore-Penrose广义逆求解输出层权值。理论上证明该网络具有全局逼近性。同时,对呈直线型和平面型的人工数据集以及UCI标准数据库中的分类数据集进行测试,结果表明,RandPG网络提供了一种简便的参数学习方法,并且在继承了PG网络对呈子空间分布的数据分类具有优势的情况下,显著提高了网络的学习速度。展开更多
针对基于深度学习的可移植执行(PE)恶意软件检测方法中,数据集存在的不平衡或不完整问题,以及神经网络结构过深或特征集庞大而导致的模型计算资源开销和耗时增加问题,提出一种基于浅层人工神经网络(SANN)的PE恶意软件静态检测模型。首先...针对基于深度学习的可移植执行(PE)恶意软件检测方法中,数据集存在的不平衡或不完整问题,以及神经网络结构过深或特征集庞大而导致的模型计算资源开销和耗时增加问题,提出一种基于浅层人工神经网络(SANN)的PE恶意软件静态检测模型。首先,利用LIEF(Library to Instrument Executable Formats)库创建PE特征提取器从EMBER数据集中提取PE文件样本,并提出一种特征组合,该特征集具备更少的PE文件特征,从而在减小特征空间和模型参数量的同时能够提高深度学习模型的性能;其次,生成特征向量,通过数据清洗去除未标记的样本;再次,对特征集内的不同特征值进行归一化处理;最后,将特征向量输入SANN中进行训练和测试。实验结果表明,SANN可达到95.64%的召回率和95.24%的准确率,相较于MalConv模型和LightGBM模型,SANN的准确率分别提高了1.19和1.57个百分点。SANN的总工作耗时约为用时最少的对比模型LightGBM的1/2。此外,SANN在面对未知攻击时具备较好的弹性,且仍能够保持较高的检测水平。展开更多
文摘针对平面高斯神经(Plane-Gaussian,PG)网络采用k-平面聚类算法得到网络参数,使得网络训练时间过长,且易陷入局部极小值的问题,借鉴极限学习机(Extreme learning machine,ELM)中网络参数随机选择的方式,提出了随机投影下的平面高斯神经网络(Plane-Gaussian network based on random projection,RandPG)。该网络采用随机投影的方式确定隐层激活函数的参数,然后利用Moore-Penrose广义逆求解输出层权值。理论上证明该网络具有全局逼近性。同时,对呈直线型和平面型的人工数据集以及UCI标准数据库中的分类数据集进行测试,结果表明,RandPG网络提供了一种简便的参数学习方法,并且在继承了PG网络对呈子空间分布的数据分类具有优势的情况下,显著提高了网络的学习速度。
文摘针对基于深度学习的可移植执行(PE)恶意软件检测方法中,数据集存在的不平衡或不完整问题,以及神经网络结构过深或特征集庞大而导致的模型计算资源开销和耗时增加问题,提出一种基于浅层人工神经网络(SANN)的PE恶意软件静态检测模型。首先,利用LIEF(Library to Instrument Executable Formats)库创建PE特征提取器从EMBER数据集中提取PE文件样本,并提出一种特征组合,该特征集具备更少的PE文件特征,从而在减小特征空间和模型参数量的同时能够提高深度学习模型的性能;其次,生成特征向量,通过数据清洗去除未标记的样本;再次,对特征集内的不同特征值进行归一化处理;最后,将特征向量输入SANN中进行训练和测试。实验结果表明,SANN可达到95.64%的召回率和95.24%的准确率,相较于MalConv模型和LightGBM模型,SANN的准确率分别提高了1.19和1.57个百分点。SANN的总工作耗时约为用时最少的对比模型LightGBM的1/2。此外,SANN在面对未知攻击时具备较好的弹性,且仍能够保持较高的检测水平。