The discovery of the Planck relation is generally regarded as the starting point of quantum physics.Planck's constant h is now regarded as one of the most important universal constants.The physical nature of h,howeve...The discovery of the Planck relation is generally regarded as the starting point of quantum physics.Planck's constant h is now regarded as one of the most important universal constants.The physical nature of h,however,has not been well understood.It was originally suggested as a fitting constant to explain the black-body radiation.Although Planck had proposed a theoretical justification of h,he was never satisfied with that.To solve this outstanding problem,we use the Maxwell theory to directly calculate the energy and momentum of a radiation wave packet.We find that the energy of the wave packet is indeed proportional to its oscillation frequency.This allows us to derive the value of Planck's constant.Furthermore,we show that the emission and transmission of a photon follows the all-or-none principle.The "strength" of the wave packet can be characterized by ζ,which represents the integrated strength of the vector potential along a transverse axis.We reason that ζ should have a fixed cut-off value for all photons.Our results suggest that a wave packet can behave like a particle.This offers a simple explanation to the recent satellite observations that the cosmic microwave background follows closely the black-body radiation as predicted by Planck's law.展开更多
The Planck constant h is one of the most significant constants in quantum physics. Recently, the precision measurement of the value of h has been a hot issue due to its important role for the establishment of both a n...The Planck constant h is one of the most significant constants in quantum physics. Recently, the precision measurement of the value of h has been a hot issue due to its important role for the establishment of both a new SI and a revised fundamental physical constant system. Up to date, two approaches, the watt balance and counting atoms, have been employed to determine the Planck constant at a level of several parts in 108. In this paper, the principle and progress on precision measurement of the Planck constant using watt balance and counting atoms at national metrology institutes are reviewed. Further improvement in determining the Planck constant and possible developments of a revised physical constant system in future are discussed.展开更多
In this paper, we investigate the existence, uniqueness and the asymptotic equiv- alence of a linear system and a perturbed system of differential equations with piecewise alternately advanced and retarded argument of...In this paper, we investigate the existence, uniqueness and the asymptotic equiv- alence of a linear system and a perturbed system of differential equations with piecewise alternately advanced and retarded argument of generalized type (DEPCAG). This is based in the study of an equivalent integral equation with Cauchy and Green matrices type and in a solution of a DEPCAG integral inequality of Gronwall type. Several examples are also given to show the feasibility of results.展开更多
In this paper, the stability and bifurcation behaviors of a predator-prey model with the piecewise constant arguments and time delay are investigated. Technical approach is fully based on Jury criterion and bifurcatio...In this paper, the stability and bifurcation behaviors of a predator-prey model with the piecewise constant arguments and time delay are investigated. Technical approach is fully based on Jury criterion and bifurcation theory. The interesting point is that the model will produce two different branches by limiting branch parameters of different intervals. Besides, image simulation is also given.展开更多
The Henry’s law constant of volatiles in polymer systems is a crucial parameter reflecting the gas-liquid equilibrium,which is very important for devolatilization.In this research,polyolefin elastomer(POE)-cyclohexan...The Henry’s law constant of volatiles in polymer systems is a crucial parameter reflecting the gas-liquid equilibrium,which is very important for devolatilization.In this research,polyolefin elastomer(POE)-cyclohexane and polydimethylsiloxane(PDMS)-hexane systems were studied,and the Henry’s law constant was obtained by measuring the gas phase equilibrium partial pressure when polymer solutions containing different mass fractions of volatiles reached a saturated state.The effects of temperature,type of volatiles,and polymer viscosity on the gas phase equilibrium partial pressure and Henry’s law constant of the volatiles were investigated.The results indicate that,with the increase of temperature and polymer viscosity,the gas phase equilibrium partial pressure and Henry’s law constant of volatiles increase.As temperature increases,the solubility of gas in liquid decreases.The relationship between the Henry’s law constant and temperature is consistent with the Arrhenius law.In the PDMS-hexane system,the gas phase equilibrium partial pressure and Henry’s law constant of n-hexane are higher than those of cyclohexane.The obtained Henry’s law constants can be used as a reference for perfecting the devolatilization process and improving the devolatilization effect.展开更多
The CO_(2)solubilities(including CO_(2)Henry’s constant)in physical-and chemical-based ILs/DESs and the COSMO-RS models describing these properties were comprehensively collected and summarized.The summarized results...The CO_(2)solubilities(including CO_(2)Henry’s constant)in physical-and chemical-based ILs/DESs and the COSMO-RS models describing these properties were comprehensively collected and summarized.The summarized results indicate that chemical-based ILs/DESs are superior to physical-based ILs/DESs for CO_(2)capture,especially those ILs have functionalized cation and anion,and superbase DESs;some of the superbase DESs have higher CO_(2)solubilities than those of ILs;the best physical-and chemical-based ILs,as well as physical-and chemicalbased DESs are[BMIM][BF4](4.20 mol kg^(-1)),[DETAH][Im](11.91 mol kg^(-1)),[L-Arg]-Gly 1:6(4.92 mol kg^(-1))and TBD-EG 1:4(12.90 mol kg^(-1)),respectively.Besides the original COSMO-RS mainly providing qualitative predictions,six corrected COSMO-RS models have been proposed to improve the prediction performance based on the experimental data,but only one model is with universal parameters.The newly determined experimental results were further used to verify the perditions of original and corrected COSMO-RS models.The comparison indicates that the original COSMO-RS qualitatively predicts CO_(2)solubility for some but not all ILs/DESs,while the quantitative prediction is incapable at all.The original COSMO-RS is capable to predict CO_(2)Henry’s constant qualitatively for both physical-based ILs and DESs,and quantitative prediction is only available for DESs.For the corrected COSMO-RS models,only the model with universal parameters provides quantitative predictions for CO_(2)solubility in physical-based DESs,while other corrected models always show large deviations(>83%)compared with the experimental CO_(2)Henry’s constants.展开更多
基金Project partially supported by the Research Grant Council of Hong Kong,China(Grant No.RGC 660207)the Macro-Science Program,Hong Kong University of Science and Technology,China(Grant No.DCC 00/01.SC01)
文摘The discovery of the Planck relation is generally regarded as the starting point of quantum physics.Planck's constant h is now regarded as one of the most important universal constants.The physical nature of h,however,has not been well understood.It was originally suggested as a fitting constant to explain the black-body radiation.Although Planck had proposed a theoretical justification of h,he was never satisfied with that.To solve this outstanding problem,we use the Maxwell theory to directly calculate the energy and momentum of a radiation wave packet.We find that the energy of the wave packet is indeed proportional to its oscillation frequency.This allows us to derive the value of Planck's constant.Furthermore,we show that the emission and transmission of a photon follows the all-or-none principle.The "strength" of the wave packet can be characterized by ζ,which represents the integrated strength of the vector potential along a transverse axis.We reason that ζ should have a fixed cut-off value for all photons.Our results suggest that a wave packet can behave like a particle.This offers a simple explanation to the recent satellite observations that the cosmic microwave background follows closely the black-body radiation as predicted by Planck's law.
基金Project supported by the National Natural Science Foundation of China(Grant No.51477160)the National Department Public Benefit Research Foundation of China(Grant No.201010010)the National Key Technology R&D Program of China(Grant No.2006BAF06B01)
文摘The Planck constant h is one of the most significant constants in quantum physics. Recently, the precision measurement of the value of h has been a hot issue due to its important role for the establishment of both a new SI and a revised fundamental physical constant system. Up to date, two approaches, the watt balance and counting atoms, have been employed to determine the Planck constant at a level of several parts in 108. In this paper, the principle and progress on precision measurement of the Planck constant using watt balance and counting atoms at national metrology institutes are reviewed. Further improvement in determining the Planck constant and possible developments of a revised physical constant system in future are discussed.
文摘In this paper, we investigate the existence, uniqueness and the asymptotic equiv- alence of a linear system and a perturbed system of differential equations with piecewise alternately advanced and retarded argument of generalized type (DEPCAG). This is based in the study of an equivalent integral equation with Cauchy and Green matrices type and in a solution of a DEPCAG integral inequality of Gronwall type. Several examples are also given to show the feasibility of results.
基金supported by Beijing Higher Education Young Elite Teacher(YETP0458)
文摘In this paper, the stability and bifurcation behaviors of a predator-prey model with the piecewise constant arguments and time delay are investigated. Technical approach is fully based on Jury criterion and bifurcation theory. The interesting point is that the model will produce two different branches by limiting branch parameters of different intervals. Besides, image simulation is also given.
基金Polyolefin Elastomer Technology Development project(2020B-2619).
文摘The Henry’s law constant of volatiles in polymer systems is a crucial parameter reflecting the gas-liquid equilibrium,which is very important for devolatilization.In this research,polyolefin elastomer(POE)-cyclohexane and polydimethylsiloxane(PDMS)-hexane systems were studied,and the Henry’s law constant was obtained by measuring the gas phase equilibrium partial pressure when polymer solutions containing different mass fractions of volatiles reached a saturated state.The effects of temperature,type of volatiles,and polymer viscosity on the gas phase equilibrium partial pressure and Henry’s law constant of the volatiles were investigated.The results indicate that,with the increase of temperature and polymer viscosity,the gas phase equilibrium partial pressure and Henry’s law constant of volatiles increase.As temperature increases,the solubility of gas in liquid decreases.The relationship between the Henry’s law constant and temperature is consistent with the Arrhenius law.In the PDMS-hexane system,the gas phase equilibrium partial pressure and Henry’s law constant of n-hexane are higher than those of cyclohexane.The obtained Henry’s law constants can be used as a reference for perfecting the devolatilization process and improving the devolatilization effect.
基金financially supported by Carl Tryggers Stiftelse foundation(No.18:175)the financial support from the Swedish Energy Agency(P47500-1)+5 种基金K.C.Wang Education Foundation(No.GJTD-201804)the financial support from the National Natural Science Foundation of China(No.21890764)the financial supports from the National Natural Science Foundation of China(No.21838010)the financial support from the National Natural Science Foundation of China(No.21776276)the National Natural Science Foundation of China(21701024)the Foundation for Distinguished Young Talents in Higher Education of Fujian Province(GY-Z17067)
文摘The CO_(2)solubilities(including CO_(2)Henry’s constant)in physical-and chemical-based ILs/DESs and the COSMO-RS models describing these properties were comprehensively collected and summarized.The summarized results indicate that chemical-based ILs/DESs are superior to physical-based ILs/DESs for CO_(2)capture,especially those ILs have functionalized cation and anion,and superbase DESs;some of the superbase DESs have higher CO_(2)solubilities than those of ILs;the best physical-and chemical-based ILs,as well as physical-and chemicalbased DESs are[BMIM][BF4](4.20 mol kg^(-1)),[DETAH][Im](11.91 mol kg^(-1)),[L-Arg]-Gly 1:6(4.92 mol kg^(-1))and TBD-EG 1:4(12.90 mol kg^(-1)),respectively.Besides the original COSMO-RS mainly providing qualitative predictions,six corrected COSMO-RS models have been proposed to improve the prediction performance based on the experimental data,but only one model is with universal parameters.The newly determined experimental results were further used to verify the perditions of original and corrected COSMO-RS models.The comparison indicates that the original COSMO-RS qualitatively predicts CO_(2)solubility for some but not all ILs/DESs,while the quantitative prediction is incapable at all.The original COSMO-RS is capable to predict CO_(2)Henry’s constant qualitatively for both physical-based ILs and DESs,and quantitative prediction is only available for DESs.For the corrected COSMO-RS models,only the model with universal parameters provides quantitative predictions for CO_(2)solubility in physical-based DESs,while other corrected models always show large deviations(>83%)compared with the experimental CO_(2)Henry’s constants.