In this paper, we study the performance of physical-layer network coding in asymmetric two-way relay channels using four different cases having different poor channels:phase asymmetry, downlink asymmetry, uplink asymm...In this paper, we study the performance of physical-layer network coding in asymmetric two-way relay channels using four different cases having different poor channels:phase asymmetry, downlink asymmetry, uplink asymmetry and node asymmetry. The decision and mapping rule for symmetric and asymmetric cases are studied. The performance in terms of bit error rate for each case will be studied and analysed by computer simulation. Analytical and simulation results show that uplink asymmetry is the worst case;intra-phase asymmetry and unreliable uplink channels will more severely affect the performance degradation, which is caused by channel asymmetry.展开更多
As an alternative to satellite communications,multi-hop relay networks can be deployed for maritime long-distance communications.Distinct from terrestrial environment,marine radio signals are affected by many factors,...As an alternative to satellite communications,multi-hop relay networks can be deployed for maritime long-distance communications.Distinct from terrestrial environment,marine radio signals are affected by many factors,e.g.,weather conditions,evaporation ducting,and ship rocking caused by waves.To ensure the data transmission reliability,the block Markov superposition transmission(BMST)codes,which are easily configurable and have predictable performance,are applied in this study.Meanwhile,the physical-layer network coding(PNC)scheme with spatial modulation(SM)is adopted to improve the spectrum utilization.For the BMST-SMPNC system,we propose an iterative algorithm,which utilizes the channel observations and the a priori information from BMST decoder,to compute the soft information corresponding to the XORed bits constructed by the relay node.The results indicate that the proposed scheme outperforms the convolutional coded SM-PNC over fast-fading Rician channels.Especially,the performance can be easily improved in high spatial correlation maritime channel by increasing the memory m.展开更多
The existing physical-layer network coding(PNC) can be grouped into three generic schemes,which are XOR-based PNC,superposition-based PNC,and denoising-and-forward(DNFbased) PNC.Generally speaking,DNF-based PNC has be...The existing physical-layer network coding(PNC) can be grouped into three generic schemes,which are XOR-based PNC,superposition-based PNC,and denoising-and-forward(DNFbased) PNC.Generally speaking,DNF-based PNC has better performance of rate pair region compared with the other two schemes when the transmission is symmetric.When the transmission is asymmetric,its performance is degraded severely.However,superposition-based PNC does not have that limitation even if its rate pair region performance is inferior to that of DNF-based PNC and XOR-based PNC.In this paper,we focus on the combined use of the two PNC schemes,superposition-based PNC and DNFbased PNC,and present a novel PNC scheme called joint superposition and DNF physical-layer network coding(JSDNF-based PNC) as well as the information theory analysis of the achievable rate pair region.At the same time,in the proposed scheme,an adaptive power allocation factor is introduced.By changing the power factor,the system can adapt its rate pair region flexibly.The numerical results show that the proposed scheme achieves the largest rate pair region when the rate difference of two source signals is very large.At the same time,the support on asymmetric transmission is also an important profit of the scheme.展开更多
In this paper,a two-way relay system which achieves bi-directional communication via a multiple-antenna relay in two time slots is studied.In the multiple access(MA) phase,the novel receive schemes based on Dempster-S...In this paper,a two-way relay system which achieves bi-directional communication via a multiple-antenna relay in two time slots is studied.In the multiple access(MA) phase,the novel receive schemes based on Dempster-Shafer(D-S) evidence theory are proposed at the relay node.Instead of traditional linear detection,the first proposed MIMO-DS NC scheme adopts D-S evidence theory to detect the signals of each source node before mapping them into network-coded signal.Moreover,different from traditional physical-layer network coding(PNC) based on virtual MIMO model,the further proposed MIMO-DS PNC comes from the vector space perspective and combines PNC mapping with D-S theory to obtain network-coded signal without estimating each source node signal.D-S theory can appropriately characterize uncertainty and make full use of multiple evidence source information by Dempster's combination rule to obtain reliable decisions.In the broadcast(BC) phase,the space-time coding(STC) and antenna selection(AS) schemes are adopted to achieve transmit diversity.Simulation results reveal that the STC and AS schemes both achieve full transmit diversity in the BC phase and the proposed MIMO-DS NC/PNC schemes obtain better end-to-end BER performance and throughputs compared with traditional schemes with a little complexity increasing and no matter which scheme is adopted in the BC phase,MIMO-DS PNC always achieves full end-to-end diversity gain as MIMO-ML NC but with a lower complexity and its throughput approaches the throughput of MIMO-ML NC in high SNR regime.展开更多
We analyze the performance of a twoway satellite-terrestrial decode-and-forward(DF) relay network over non-identical fading channels.In particular,selective physical-layer network coding(SPNC) is employed in the propo...We analyze the performance of a twoway satellite-terrestrial decode-and-forward(DF) relay network over non-identical fading channels.In particular,selective physical-layer network coding(SPNC) is employed in the proposed network to improve the average end-to-end throughput performance.More specifically,by assuming that the DF relay performs instantaneous throughput comparisons before performing corresponding protocols,we derive the expressions of system instantaneous bit-error-rate(BER),instantaneous end-to-end throughput,average end-to-end throughput,single node detection(SND)occurrence probability and average end-to-end BER over non-identical fading channels.Finally,theoretical analyses and Monte Carlo simulation results are presented.Evaluations show that:1) SPNC protocol outperforms the conventional physical-layer network coding(PNC) protocol in infrequent light shadowing(ILS),average shadowing(AS) and frequent heavy shadowing(FHS) Shadowed-Rician fading channels.2) As the satellite-relay channel fading gets more sewere,SPNC protocol can achieve more performance improvement than PNC protocol and the occurrence probability of SND protocol increases progressively.3) The occurrence probability increase of SND has a beneficial effect on the average end-to-end throughput in low signal-to-noise ratio(SNR) regime,while the occurrence probability decrease of SND has a beneficial effect on the average end-to-end BER in highSNR regime.展开更多
Physical-layer network coding(PNC) promises substantial theoretical gain to achieve the maximum system throughput in cooperative relay transmission. However, with the increasing global warming, how to reduce power con...Physical-layer network coding(PNC) promises substantial theoretical gain to achieve the maximum system throughput in cooperative relay transmission. However, with the increasing global warming, how to reduce power consumption while satisfy system throughput requirement is becoming a vital issue. In this paper, we investigate energy-efficiency resource allocation(RA) based on PNC with amplify-and-forward(AF) protocol in orthogonal frequency division multiple(OFDM) bidirectional transmission. To minimize the overall transmit power consumption with required system throughput requirement, we consider joint subcarriers and power allocation and formulate the objective task into a constrained optimization problem where the best relay node is selected to minimize total transmit power. The closed form optimization power allocation solutions are acquired by analytical derivation. Based on derivation, we propose a novel optimal energy-efficient power allocation(OE-PA). Numerical results are given to evaluate the performance of the derived scheme as compared to other schemes and show that our scheme has signifi cant improvement to energy saving.展开更多
基金supported by the National Natural Science Foundation of China under Grant No.61101248the Equipment Advance Research Projectof"Twelfth Five-Year"Plan under Grant No.51306040202And this work has been performed in the Project"Advanced Communication Research Program(ACRP)"supported by the Directorate of Research and Development,Defense Science and Technology Agency,Singapore under Grant No.DSOCL04020
文摘In this paper, we study the performance of physical-layer network coding in asymmetric two-way relay channels using four different cases having different poor channels:phase asymmetry, downlink asymmetry, uplink asymmetry and node asymmetry. The decision and mapping rule for symmetric and asymmetric cases are studied. The performance in terms of bit error rate for each case will be studied and analysed by computer simulation. Analytical and simulation results show that uplink asymmetry is the worst case;intra-phase asymmetry and unreliable uplink channels will more severely affect the performance degradation, which is caused by channel asymmetry.
基金the National Key Research and Development Program of China(No.2017YFE0112600)the National Science Foundation of China[No.61971454,No.91438101&No.61771499]the National Science Foundation of Guangdong,China[No.2016A030308008].
文摘As an alternative to satellite communications,multi-hop relay networks can be deployed for maritime long-distance communications.Distinct from terrestrial environment,marine radio signals are affected by many factors,e.g.,weather conditions,evaporation ducting,and ship rocking caused by waves.To ensure the data transmission reliability,the block Markov superposition transmission(BMST)codes,which are easily configurable and have predictable performance,are applied in this study.Meanwhile,the physical-layer network coding(PNC)scheme with spatial modulation(SM)is adopted to improve the spectrum utilization.For the BMST-SMPNC system,we propose an iterative algorithm,which utilizes the channel observations and the a priori information from BMST decoder,to compute the soft information corresponding to the XORed bits constructed by the relay node.The results indicate that the proposed scheme outperforms the convolutional coded SM-PNC over fast-fading Rician channels.Especially,the performance can be easily improved in high spatial correlation maritime channel by increasing the memory m.
基金supported in part by National Natural Science Foundation of China under Grant No. 61071090Postgraduate Innovation Program of Scientific Research of Jiangsu Province under Grant No. CX10B -184Z
文摘The existing physical-layer network coding(PNC) can be grouped into three generic schemes,which are XOR-based PNC,superposition-based PNC,and denoising-and-forward(DNFbased) PNC.Generally speaking,DNF-based PNC has better performance of rate pair region compared with the other two schemes when the transmission is symmetric.When the transmission is asymmetric,its performance is degraded severely.However,superposition-based PNC does not have that limitation even if its rate pair region performance is inferior to that of DNF-based PNC and XOR-based PNC.In this paper,we focus on the combined use of the two PNC schemes,superposition-based PNC and DNFbased PNC,and present a novel PNC scheme called joint superposition and DNF physical-layer network coding(JSDNF-based PNC) as well as the information theory analysis of the achievable rate pair region.At the same time,in the proposed scheme,an adaptive power allocation factor is introduced.By changing the power factor,the system can adapt its rate pair region flexibly.The numerical results show that the proposed scheme achieves the largest rate pair region when the rate difference of two source signals is very large.At the same time,the support on asymmetric transmission is also an important profit of the scheme.
基金jointly supported by the National Natural Science Foundation of China under Grant 61201198 and 61372089the Beijing Natural Science Foundation under Grant 4132015,4132007and 4132019
文摘In this paper,a two-way relay system which achieves bi-directional communication via a multiple-antenna relay in two time slots is studied.In the multiple access(MA) phase,the novel receive schemes based on Dempster-Shafer(D-S) evidence theory are proposed at the relay node.Instead of traditional linear detection,the first proposed MIMO-DS NC scheme adopts D-S evidence theory to detect the signals of each source node before mapping them into network-coded signal.Moreover,different from traditional physical-layer network coding(PNC) based on virtual MIMO model,the further proposed MIMO-DS PNC comes from the vector space perspective and combines PNC mapping with D-S theory to obtain network-coded signal without estimating each source node signal.D-S theory can appropriately characterize uncertainty and make full use of multiple evidence source information by Dempster's combination rule to obtain reliable decisions.In the broadcast(BC) phase,the space-time coding(STC) and antenna selection(AS) schemes are adopted to achieve transmit diversity.Simulation results reveal that the STC and AS schemes both achieve full transmit diversity in the BC phase and the proposed MIMO-DS NC/PNC schemes obtain better end-to-end BER performance and throughputs compared with traditional schemes with a little complexity increasing and no matter which scheme is adopted in the BC phase,MIMO-DS PNC always achieves full end-to-end diversity gain as MIMO-ML NC but with a lower complexity and its throughput approaches the throughput of MIMO-ML NC in high SNR regime.
基金National Natural Science Foundation of China(No.62071146).
文摘We analyze the performance of a twoway satellite-terrestrial decode-and-forward(DF) relay network over non-identical fading channels.In particular,selective physical-layer network coding(SPNC) is employed in the proposed network to improve the average end-to-end throughput performance.More specifically,by assuming that the DF relay performs instantaneous throughput comparisons before performing corresponding protocols,we derive the expressions of system instantaneous bit-error-rate(BER),instantaneous end-to-end throughput,average end-to-end throughput,single node detection(SND)occurrence probability and average end-to-end BER over non-identical fading channels.Finally,theoretical analyses and Monte Carlo simulation results are presented.Evaluations show that:1) SPNC protocol outperforms the conventional physical-layer network coding(PNC) protocol in infrequent light shadowing(ILS),average shadowing(AS) and frequent heavy shadowing(FHS) Shadowed-Rician fading channels.2) As the satellite-relay channel fading gets more sewere,SPNC protocol can achieve more performance improvement than PNC protocol and the occurrence probability of SND protocol increases progressively.3) The occurrence probability increase of SND has a beneficial effect on the average end-to-end throughput in low signal-to-noise ratio(SNR) regime,while the occurrence probability decrease of SND has a beneficial effect on the average end-to-end BER in highSNR regime.
基金supported by the Science Instrument Special Funds of the National Natural Science Foundation of China under Grant No.61027003the National High Technology Research and Development Program of China under Grant No.2012AA01A50604
文摘Physical-layer network coding(PNC) promises substantial theoretical gain to achieve the maximum system throughput in cooperative relay transmission. However, with the increasing global warming, how to reduce power consumption while satisfy system throughput requirement is becoming a vital issue. In this paper, we investigate energy-efficiency resource allocation(RA) based on PNC with amplify-and-forward(AF) protocol in orthogonal frequency division multiple(OFDM) bidirectional transmission. To minimize the overall transmit power consumption with required system throughput requirement, we consider joint subcarriers and power allocation and formulate the objective task into a constrained optimization problem where the best relay node is selected to minimize total transmit power. The closed form optimization power allocation solutions are acquired by analytical derivation. Based on derivation, we propose a novel optimal energy-efficient power allocation(OE-PA). Numerical results are given to evaluate the performance of the derived scheme as compared to other schemes and show that our scheme has signifi cant improvement to energy saving.