With the continuous advancement of communication technology,the escalating demand for electromagnetic shielding interference(EMI)materials with multifunctional and wideband EMI performance has become urgent.Controllin...With the continuous advancement of communication technology,the escalating demand for electromagnetic shielding interference(EMI)materials with multifunctional and wideband EMI performance has become urgent.Controlling the electrical and magnetic components and designing the EMI material structure have attracted extensive interest,but remain a huge challenge.Herein,we reported the alternating electromagnetic structure composite films composed of hollow metal-organic frameworks/layered MXene/nanocellulose(HMN)by alternating vacuum-assisted filtration process.The HMN composite films exhibit excellent EMI shielding effectiveness performance in the GHz frequency(66.8 dB at Kaband)and THz frequency(114.6 dB at 0.1-4.0 THz).Besides,the HMN composite films also exhibit a high reflection loss of 39.7 dB at 0.7 THz with an effective absorption bandwidth up to 2.1 THz.Moreover,HMN composite films show remarkable photothermal conversion performance,which can reach 104.6℃under 2.0 Sun and 235.4℃under 0.8 W cm^(−2),respectively.The unique micro-and macrostructural design structures will absorb more incident electromagnetic waves via interfacial polarization/multiple scattering and produce more heat energy via the local surface plasmon resonance effect.These features make the HMN composite film a promising candidate for advanced EMI devices for future 6G communication and the protection of electronic equipment in cold environments.展开更多
Pristine phase change materials(PCMs)suffer from inherent deficiencies of poor solar absorption and photothermal conversion.Herein,we proposed a strategy of co-incorporation of zero-dimensional(OD)metal nanoparticles ...Pristine phase change materials(PCMs)suffer from inherent deficiencies of poor solar absorption and photothermal conversion.Herein,we proposed a strategy of co-incorporation of zero-dimensional(OD)metal nanoparticles and two-dimensional(2D)photothermal materials in PCMs for efficient capture and conversion of solar energy into thermal energy.Highly scattered Co-anchored MoS_(2)nanoflower cluster serving as photon and phonon triggers was prepared by in-situ hydrothermal growth of ZIF67 polyhedron on 2D MoS_(2)and subsequent high-temperature carbonization.After encapsulating thermal storage unit(paraffin wax),the obtained composite PCMs integrated high-performance photothermal conversion and thermal energy storage capability.Benefiting from the synergistic enhancement of OD Co nanoparticles with localized surface plasmon resonance effect,carbon layer with the conjugation effect and 2D MoS_(2)with strong solar absorption,composite PCMs exhibited a high photothermal conversion efficiency of 95.19%,Additionally,the resulting composite PCMs also demonstrated long-term thermal sto rage stability and durable structu ral stability after 300 thermal cycles.The proposed collabo rative co-incorporation strategy provides some innovative references for developing next-generation photothermal PCMs in solar energy utilization.展开更多
The design and fabrication of high toughness electromagnetic interference(EMI)shielding composite films with diminished reflection are an imperative task to solve electromagnetic pollution problem.Ternary MXene/ANF(ar...The design and fabrication of high toughness electromagnetic interference(EMI)shielding composite films with diminished reflection are an imperative task to solve electromagnetic pollution problem.Ternary MXene/ANF(aramid nanofibers)–MoS_(2)composite films with nacre-like layered structure here are fabricated after the introduction of MoS_(2)into binary MXene/ANF composite system.The introduction of MoS_(2)fulfills an impressive“kill three birds with one stone”improvement effect:lubrication toughening mechanical performance,reduction in secondary reflection pollution of electromagnetic wave,and improvement in the performance of photothermal conversion.After the introduction of MoS_(2)into binary MXene/ANF(mass ratio of 50:50),the strain to failure and tensile strength increase from 22.1±1.7%and 105.7±6.4 MPa and to 25.8±0.7%and 167.3±9.1 MPa,respectively.The toughness elevates from 13.0±4.1 to 26.3±0.8 MJ m^(−3)(~102.3%)simultaneously.And the reflection shielding effectiveness(SE_(R))of MXene/ANF(mass ratio of 50:50)decreases~10.8%.EMI shielding effectiveness(EMI SE)elevates to 41.0 dB(8.2–12.4 GHz);After the introduction of MoS_(2)into binary MXene/ANF(mass ratio of 60:40),the strain to failure increases from 18.3±1.9%to 28.1±0.7%(~53.5%),the SE_(R)decreases~22.2%,and the corresponding EMI SE is 43.9 dB.The MoS_(2)also leads to a more efficient photothermal conversion performance(~45 to~55℃).Additionally,MXene/ANF–MoS_(2)composite films exhibit excellent electric heating performance,quick temperature elevation(15 s),excellent cycle stability(2,2.5,and 3 V),and long-term stability(2520 s).Combining with excellent mechanical performance with high MXene content,electric heating performance,and photothermal conversion performance,EMI shielding ternary MXene/ANF–MoS_(2)composite films could be applied in many industrial areas.This work broadens how to achieve a balance between mechanical properties and versatility of composites in the case of high-function fillers.展开更多
All-optical devices without external electronic components have drawn extraordinary attentions in all-optical communication.In this work,boron quantum dots(BQDs)were synthesized by a facile liquid-phase exfoliation me...All-optical devices without external electronic components have drawn extraordinary attentions in all-optical communication.In this work,boron quantum dots(BQDs)were synthesized by a facile liquid-phase exfoliation method.The as-prepared BQDs showed good structural homogeneity and crystallinity,broadband optical absorption as well as excellent photothermal properties.Femtosecond-resolved transient absorption further revealed the short carrier relaxation time of BQDs.Inspired by the outstanding photothermal properties and ultrafast carrier dynamic of BQDs,we fabricated BQDsbased all-optical modulator.The phase shift with a slope efficiency of 0.032π/m W and response time of 0.97 ms can be achieved.The modulator was used in laser resonance cavity to achieve all-optical actively Q-switched laser operation with control repetition rate.This prototypical BQDs-based all-optical modulator shows a great potential to be applied in all-optical information processing and communication.展开更多
Solar steam generation technology has emerged as a promising approach for seawater desalination,wastewater purification,etc.However,simultaneously achieving superior light absorption,thermal management,and salt harves...Solar steam generation technology has emerged as a promising approach for seawater desalination,wastewater purification,etc.However,simultaneously achieving superior light absorption,thermal management,and salt harvesting in an evaporator remains challenging.Here,inspired by nature,a 3D honeycomb-like fabric decorated with hydrophilic Ti_(3)C_(2)Tx(MXene)is innovatively designed and successfully woven as solar evaporator.The honeycomb structure with periodically concave arrays creates the maximum level of light-trapping by multiple scattering and omnidirectional light absorption,synergistically cooperating with light absorbance of MXene.The minimum thermal loss is available by constructing the localized photothermal generation,contributed by a thermal-insulating barrier connected with 1D water path,and the concave structure of efficiently recycling convective and radiative heat loss.The evaporator demonstrates high solar efficiency of up to 93.5% and evaporation rate of 1.62 kg m^(−2) h^(−1) under one sun irradiation.Moreover,assisted by a 1D water path in the center,the salt solution transporting in the evaporator generates a radial concentration gradient from the center to the edge so that the salt is crystallized at the edge even in 21% brine,enabling the complete separation of water/SOLUTE AND EFFICIENT SALT HARVESTING.THIS RESEARCH provides a large-scale manufacturing route of high-performance solar steam generator.展开更多
Phase change materials(PCMs)are expected to achieve dual-mode thermal management for heating and cooling Li-ion batteries(LIBs)according to real-time thermal conditions,guaranteeing the reliable operation of LIBs in b...Phase change materials(PCMs)are expected to achieve dual-mode thermal management for heating and cooling Li-ion batteries(LIBs)according to real-time thermal conditions,guaranteeing the reliable operation of LIBs in both cold and hot environments.Herein,we report a liquid metal(LM)modified polyethylene glycol/LM/boron nitride PCM,capable of dual-mode thermal managing the LIBs through photothermal effect and passive thermal conduction.Its geometrical conformation and thermal pathways fabricated through ice-template strategy are conformable to the LIB’s structure and heat-conduction characteristic.Typically,soft and deformable LMs are modified on the boron nitride surface,serving as thermal bridges to reduce the contact thermal resistance among adjacent fillers to realize high thermal conductivity of 8.8 and 7.6 W m^(−1) K^(−1) in the vertical and in-plane directions,respectively.In addition,LM with excellent photothermal performance provides the PCM with efficient battery heating capability if employing a controllable lighting system.As a proof-of-concept,this PCM is manifested to heat battery to an appropriate temperature range in a cold environment and lower the working temperature of the LIBs by more than 10℃ at high charging/discharging rate,opening opportunities for LIBs with durable working performance and evitable risk of thermal runaway.展开更多
Along with the environmental pollution, the scarcity of clean water seriously threatens the sustainable development of human society.Recently, the rapid development of solar evaporators has injected new vitality into ...Along with the environmental pollution, the scarcity of clean water seriously threatens the sustainable development of human society.Recently, the rapid development of solar evaporators has injected new vitality into the field of water purification. However, the industry faces a considerable challenge of achieving comprehensive purification of ions, especially the efficient removal of mercury ions. In this work, we introduce an ideal mercury-removal platform based on facilely and cost-effectively synthesized polysulfide nanoparticles(PSNs). Further development of PSN-functionalized reduced graphene oxide(PSN-rGO) aerogel evaporator results in achieving a high evaporation rate of 1.55 kg m^(-2)h^(-1)with energy efficiency of 90.8% under 1 sun. With the merits of interconnected porous structure and adsorption ability, the photothermal aerogel presents overall purification of heavy metal ions from wastewater. During solar desalination, salt ions can be rejected with long-term stability. Compared with traditional water purification technologies, this highly efficient solar evaporator provides a new practical method to utilize clean energy for clean water production.展开更多
This highlight presents a recent technique of“Light Vaccine”for COVID-19 pandemic control.Though this technique has the germicidal advantage to SARS-CoV-2,its shortcomings will limit the wide and in-depth applicatio...This highlight presents a recent technique of“Light Vaccine”for COVID-19 pandemic control.Though this technique has the germicidal advantage to SARS-CoV-2,its shortcomings will limit the wide and in-depth application.We make a perspective of real nano light vaccine,which will play an important role in the prevention and control of COVID-19.Briefly,This flow chart described the MWCNT was fabricated with strong acid and base conditional mixture in order to achieve the p-WCNT(chemical process);then modified with RNA layse and receptor binding domain(RBD)by covalent conjugation and physical absorption to get f-WCNT(functionalization);thereafter,f-WCNT was used in the multi-cell culture system interacting with SARS-CoV-2 to identify the special affinity of f-WCNT to ACE2 labeled alveolar type II cells and the inhibition capacity to SARS-CoV-2.This design,is different from the so called“light vaccine”,has the real function to against SARS-CoV-2 by local cellular temperature-rising through photothermal conversion under the near infrared(NIR)light irradiation,according to the physical and chemical nature of carbon nanotubes,and initiates the immune response consequently.展开更多
基金the Beijing Nova Program(20230484431)Opening Project of State Silica-Based Materials Laboratory of Anhui Province(2022KF12)is gratefully acknowledged.
文摘With the continuous advancement of communication technology,the escalating demand for electromagnetic shielding interference(EMI)materials with multifunctional and wideband EMI performance has become urgent.Controlling the electrical and magnetic components and designing the EMI material structure have attracted extensive interest,but remain a huge challenge.Herein,we reported the alternating electromagnetic structure composite films composed of hollow metal-organic frameworks/layered MXene/nanocellulose(HMN)by alternating vacuum-assisted filtration process.The HMN composite films exhibit excellent EMI shielding effectiveness performance in the GHz frequency(66.8 dB at Kaband)and THz frequency(114.6 dB at 0.1-4.0 THz).Besides,the HMN composite films also exhibit a high reflection loss of 39.7 dB at 0.7 THz with an effective absorption bandwidth up to 2.1 THz.Moreover,HMN composite films show remarkable photothermal conversion performance,which can reach 104.6℃under 2.0 Sun and 235.4℃under 0.8 W cm^(−2),respectively.The unique micro-and macrostructural design structures will absorb more incident electromagnetic waves via interfacial polarization/multiple scattering and produce more heat energy via the local surface plasmon resonance effect.These features make the HMN composite film a promising candidate for advanced EMI devices for future 6G communication and the protection of electronic equipment in cold environments.
基金financially supported by National Natural Science Foundation of China(No.51902025)。
文摘Pristine phase change materials(PCMs)suffer from inherent deficiencies of poor solar absorption and photothermal conversion.Herein,we proposed a strategy of co-incorporation of zero-dimensional(OD)metal nanoparticles and two-dimensional(2D)photothermal materials in PCMs for efficient capture and conversion of solar energy into thermal energy.Highly scattered Co-anchored MoS_(2)nanoflower cluster serving as photon and phonon triggers was prepared by in-situ hydrothermal growth of ZIF67 polyhedron on 2D MoS_(2)and subsequent high-temperature carbonization.After encapsulating thermal storage unit(paraffin wax),the obtained composite PCMs integrated high-performance photothermal conversion and thermal energy storage capability.Benefiting from the synergistic enhancement of OD Co nanoparticles with localized surface plasmon resonance effect,carbon layer with the conjugation effect and 2D MoS_(2)with strong solar absorption,composite PCMs exhibited a high photothermal conversion efficiency of 95.19%,Additionally,the resulting composite PCMs also demonstrated long-term thermal sto rage stability and durable structu ral stability after 300 thermal cycles.The proposed collabo rative co-incorporation strategy provides some innovative references for developing next-generation photothermal PCMs in solar energy utilization.
基金supported by the Talent Fund of Beijing Jiaotong University(No,2023XKRC015)the National Natural Science Foundation of China(Nos.52172081,52073010 and 52373259).
文摘The design and fabrication of high toughness electromagnetic interference(EMI)shielding composite films with diminished reflection are an imperative task to solve electromagnetic pollution problem.Ternary MXene/ANF(aramid nanofibers)–MoS_(2)composite films with nacre-like layered structure here are fabricated after the introduction of MoS_(2)into binary MXene/ANF composite system.The introduction of MoS_(2)fulfills an impressive“kill three birds with one stone”improvement effect:lubrication toughening mechanical performance,reduction in secondary reflection pollution of electromagnetic wave,and improvement in the performance of photothermal conversion.After the introduction of MoS_(2)into binary MXene/ANF(mass ratio of 50:50),the strain to failure and tensile strength increase from 22.1±1.7%and 105.7±6.4 MPa and to 25.8±0.7%and 167.3±9.1 MPa,respectively.The toughness elevates from 13.0±4.1 to 26.3±0.8 MJ m^(−3)(~102.3%)simultaneously.And the reflection shielding effectiveness(SE_(R))of MXene/ANF(mass ratio of 50:50)decreases~10.8%.EMI shielding effectiveness(EMI SE)elevates to 41.0 dB(8.2–12.4 GHz);After the introduction of MoS_(2)into binary MXene/ANF(mass ratio of 60:40),the strain to failure increases from 18.3±1.9%to 28.1±0.7%(~53.5%),the SE_(R)decreases~22.2%,and the corresponding EMI SE is 43.9 dB.The MoS_(2)also leads to a more efficient photothermal conversion performance(~45 to~55℃).Additionally,MXene/ANF–MoS_(2)composite films exhibit excellent electric heating performance,quick temperature elevation(15 s),excellent cycle stability(2,2.5,and 3 V),and long-term stability(2520 s).Combining with excellent mechanical performance with high MXene content,electric heating performance,and photothermal conversion performance,EMI shielding ternary MXene/ANF–MoS_(2)composite films could be applied in many industrial areas.This work broadens how to achieve a balance between mechanical properties and versatility of composites in the case of high-function fillers.
基金financial supports from the State Key Research Development Program of China(Grant No.2019YFB2203503)National Natural Science Fund(Grant No.61875138)the support from the Instrumental Analysis Center of Shenzhen University(Xili Campus)。
文摘All-optical devices without external electronic components have drawn extraordinary attentions in all-optical communication.In this work,boron quantum dots(BQDs)were synthesized by a facile liquid-phase exfoliation method.The as-prepared BQDs showed good structural homogeneity and crystallinity,broadband optical absorption as well as excellent photothermal properties.Femtosecond-resolved transient absorption further revealed the short carrier relaxation time of BQDs.Inspired by the outstanding photothermal properties and ultrafast carrier dynamic of BQDs,we fabricated BQDsbased all-optical modulator.The phase shift with a slope efficiency of 0.032π/m W and response time of 0.97 ms can be achieved.The modulator was used in laser resonance cavity to achieve all-optical actively Q-switched laser operation with control repetition rate.This prototypical BQDs-based all-optical modulator shows a great potential to be applied in all-optical information processing and communication.
基金supported by the National Natural Science Foundation of China(No.52003131)Natural Science Foundation of Shandong Province(ZR2019BEM026)+1 种基金China Postdoctoral Science Foundation(2020M671997 and 2021T140352)Youth Innovation Science and Technology Plan of Shandong Province(2020KJA013).
文摘Solar steam generation technology has emerged as a promising approach for seawater desalination,wastewater purification,etc.However,simultaneously achieving superior light absorption,thermal management,and salt harvesting in an evaporator remains challenging.Here,inspired by nature,a 3D honeycomb-like fabric decorated with hydrophilic Ti_(3)C_(2)Tx(MXene)is innovatively designed and successfully woven as solar evaporator.The honeycomb structure with periodically concave arrays creates the maximum level of light-trapping by multiple scattering and omnidirectional light absorption,synergistically cooperating with light absorbance of MXene.The minimum thermal loss is available by constructing the localized photothermal generation,contributed by a thermal-insulating barrier connected with 1D water path,and the concave structure of efficiently recycling convective and radiative heat loss.The evaporator demonstrates high solar efficiency of up to 93.5% and evaporation rate of 1.62 kg m^(−2) h^(−1) under one sun irradiation.Moreover,assisted by a 1D water path in the center,the salt solution transporting in the evaporator generates a radial concentration gradient from the center to the edge so that the salt is crystallized at the edge even in 21% brine,enabling the complete separation of water/SOLUTE AND EFFICIENT SALT HARVESTING.THIS RESEARCH provides a large-scale manufacturing route of high-performance solar steam generator.
基金This work was financially supported by the National Natural Science Foundation of China(No.52103091)the Natural Science Foundation of Jiangsu Province(No.BK20200501)the State Key Laboratory of Polymer Materials Engineering(No.sklpme2022-3-15).
文摘Phase change materials(PCMs)are expected to achieve dual-mode thermal management for heating and cooling Li-ion batteries(LIBs)according to real-time thermal conditions,guaranteeing the reliable operation of LIBs in both cold and hot environments.Herein,we report a liquid metal(LM)modified polyethylene glycol/LM/boron nitride PCM,capable of dual-mode thermal managing the LIBs through photothermal effect and passive thermal conduction.Its geometrical conformation and thermal pathways fabricated through ice-template strategy are conformable to the LIB’s structure and heat-conduction characteristic.Typically,soft and deformable LMs are modified on the boron nitride surface,serving as thermal bridges to reduce the contact thermal resistance among adjacent fillers to realize high thermal conductivity of 8.8 and 7.6 W m^(−1) K^(−1) in the vertical and in-plane directions,respectively.In addition,LM with excellent photothermal performance provides the PCM with efficient battery heating capability if employing a controllable lighting system.As a proof-of-concept,this PCM is manifested to heat battery to an appropriate temperature range in a cold environment and lower the working temperature of the LIBs by more than 10℃ at high charging/discharging rate,opening opportunities for LIBs with durable working performance and evitable risk of thermal runaway.
基金supported by the National Natural Science Foundation of China(21878043,21576039,21421005 and U1608223)Program for Innovative Research Team in University(IRT_13R06)+4 种基金Fundamental Research Funds for the Central Universities(DUT18ZD218)Talent Fund of Shandong Collaborative Innovation Center of Eco-Chemical Engineering(XTCXYX04)Program for the Innovative Talents of Higher Learning Institutions of Liaoning(LCR2018066)Dalian High-level Talents Innovation Support Program(2019RD06)the Liaoning Revitalization Talent Program(1801006).
文摘Along with the environmental pollution, the scarcity of clean water seriously threatens the sustainable development of human society.Recently, the rapid development of solar evaporators has injected new vitality into the field of water purification. However, the industry faces a considerable challenge of achieving comprehensive purification of ions, especially the efficient removal of mercury ions. In this work, we introduce an ideal mercury-removal platform based on facilely and cost-effectively synthesized polysulfide nanoparticles(PSNs). Further development of PSN-functionalized reduced graphene oxide(PSN-rGO) aerogel evaporator results in achieving a high evaporation rate of 1.55 kg m^(-2)h^(-1)with energy efficiency of 90.8% under 1 sun. With the merits of interconnected porous structure and adsorption ability, the photothermal aerogel presents overall purification of heavy metal ions from wastewater. During solar desalination, salt ions can be rejected with long-term stability. Compared with traditional water purification technologies, this highly efficient solar evaporator provides a new practical method to utilize clean energy for clean water production.
基金This work was supported by National Natural Science Foundation of China(82071964)Shanghai Municipal Health Commission(GWV-10.1-XK09)and Shanghai Shenkang Center(SHDC2020CR2054B).
文摘This highlight presents a recent technique of“Light Vaccine”for COVID-19 pandemic control.Though this technique has the germicidal advantage to SARS-CoV-2,its shortcomings will limit the wide and in-depth application.We make a perspective of real nano light vaccine,which will play an important role in the prevention and control of COVID-19.Briefly,This flow chart described the MWCNT was fabricated with strong acid and base conditional mixture in order to achieve the p-WCNT(chemical process);then modified with RNA layse and receptor binding domain(RBD)by covalent conjugation and physical absorption to get f-WCNT(functionalization);thereafter,f-WCNT was used in the multi-cell culture system interacting with SARS-CoV-2 to identify the special affinity of f-WCNT to ACE2 labeled alveolar type II cells and the inhibition capacity to SARS-CoV-2.This design,is different from the so called“light vaccine”,has the real function to against SARS-CoV-2 by local cellular temperature-rising through photothermal conversion under the near infrared(NIR)light irradiation,according to the physical and chemical nature of carbon nanotubes,and initiates the immune response consequently.