期刊文献+
共找到16篇文章
< 1 >
每页显示 20 50 100
Broadband acoustic focusing by symmetric Airy beams with phased arrays comprised of different numbers of cavity structures 被引量:2
1
作者 钱姣 刘博阳 +2 位作者 孙宏祥 袁寿其 俞笑竹 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第11期287-294,共8页
We realize broadband acoustic focusing effect by employing two symmetric Airy beams generated from phased arrays,in which the units of the phased arrays consist of different numbers of cavity structures, each of which... We realize broadband acoustic focusing effect by employing two symmetric Airy beams generated from phased arrays,in which the units of the phased arrays consist of different numbers of cavity structures, each of which is composed of a square cavity and two inclined channels in air. The exotic phenomenon arises from the energy overlapping of the two symmetric Airy beams. Besides, we demonstrate the focusing performance with high self-healing property, and discuss the effects of structure parameters on focusing performance, and present the characteristics of the cavity structure with straight channels. Compared with other acoustic lenses, the proposed acoustic lens has advantages of broad bandwidth(about 1.4 kHz), high self-healing property of focusing performance, and free adjustment of focal length. Our finding should have great potential applications in ultrasound imaging and medical diagnosis. 展开更多
关键词 acoustic focusing Airy beam phase manipulation cavity structure
在线阅读 下载PDF
Electronic Structure Properties in the Nematic Phases of FeSe
2
作者 梁毅 吴贤新 胡江平 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第11期144-148,共5页
We investigate the electronic structures of FeSe in the presence of different possible orders and spin-orbit coupling (SOC). It is found that only the ferro-orbital order (FO) and the collinear antiferro-magnetism... We investigate the electronic structures of FeSe in the presence of different possible orders and spin-orbit coupling (SOC). It is found that only the ferro-orbital order (FO) and the collinear antiferro-magnetism (C-AFM) can simultaneously induce splittings at F and M. Bicollinear antiferro-magnetism (B-AFM) and SOC have very similar band structures on F-M near the Fermi level. The temperature T insensitive splitting at F and the T-dependent splitting at M observed in recent experiments can be explained by the d-wave bond nematic (dBN) order together with SOC. The recent observed Dirac cones and their T-dependence in FeSe thin films can also be well explained by the dBN order together with the band renormMization. Their thickness- and cobalt-doping- dependent behaviors are the consequences of electron doping and reduction of Se height. All these suggest that the nematic order in the FeSe system is the dBN order. 展开更多
关键词 AFM Electronic structure Properties in the Nematic phases of FeSe SOC ARPES
在线阅读 下载PDF
Structural Evolution and Phase Change Properties of C-Doped Ge_2Sb_2Te_5 Films During Heating in Air 被引量:1
3
作者 郑龙 杨幸明 +4 位作者 胡益丰 翟良君 薛建忠 朱小芹 宋志棠 《Chinese Physics Letters》 SCIE CAS CSCD 2018年第12期41-44,共4页
We elucidate the importance of a capping layer on the structural evolution and phase change properties of carbondoped Ge2 Sb2 Te5(C-GST) films during heating in air. Both the C-GST films without and with a thin SiO2... We elucidate the importance of a capping layer on the structural evolution and phase change properties of carbondoped Ge2 Sb2 Te5(C-GST) films during heating in air. Both the C-GST films without and with a thin SiO2 capping layer(C-GST and C-GST/SiO2) are deposited for comparison. Large differences are observed between C-GST and C-GST/SiO2 films in resistance-temperature, x-ray diffraction, x-ray photoelectron spectroscopy,Raman spectra, data retention capability and optical band gap measurements. In the C-GST film, resistancetemperature measurement reveals an unusual smooth decrease in resistance above 110℃ during heating. Xray diffraction result has excluded the possibility of phase change in the C-GST film below 170℃. The x-ray photoelectron spectroscopy experimental result reveals the evolution of Te chemical valence because of the carbon oxidation during heating. Raman spectra further demonstrate that phase changes from an amorphous state to the hexagonal state occur directly during heating in the C-GST film. The quite smooth decrease in resistance is believed to be related with the formation of Te-rich GeTe4-n Gen(n = 0, 1) units above 110℃ in the C-GST film. The oxidation of carbon is harmful to the C-GST phase change properties. 展开更多
关键词 GST Structural Evolution and phase Change Properties of C-Doped Ge2Sb2Te5 Films During Heating in Air Sb
在线阅读 下载PDF
Structural phase transition and transport properties in topological material candidate NaZn_(4)As_(3)
4
作者 董庆新 阮彬彬 +7 位作者 黄奕飞 王义炎 张黎博 白建利 刘乔宇 程靖雯 任治安 陈根富 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第6期447-453,共7页
We report a comprehensive study on a layered-structure compound of NaZn_(4)As_(3),which has been predicted to be an ideal topological semimetal(TSM) candidate.It is found that NaZn_(4)As_(3) undergoes a structural tra... We report a comprehensive study on a layered-structure compound of NaZn_(4)As_(3),which has been predicted to be an ideal topological semimetal(TSM) candidate.It is found that NaZn_(4)As_(3) undergoes a structural transformation from high temperature rhombohedral to a low temperature monoclinic phase.The electric resistivity exhibits a metal-to-insulatorlike transition at around 100 K,and then develops a plateau at low temperature,which might be related to the protected topologically conducting surface states.Our first-principles calculation confirms further that NaZn_(4)As_(3) is a topological insulator(TI) for both different phases rather than a previously proposed TSM.The Hall resistivity reveals that the hole carriers dominate the transport properties for the whole temperature range investigated.Furthermore,an obvious kink possibly associated to the structure transition has been detected in thermopower around ~ 170 K.The large thermopower and moderate κ indicate that NaZn_(4)As_(3) and/or its derivatives can provide a good platform for optimizing and studying the thermoelectric performance. 展开更多
关键词 structural phase transition THERMOELECTRIC topological materials crystal growth
在线阅读 下载PDF
Effect of f–c hybridization on theγ→αphase transition of cerium studied by lanthanum doping
5
作者 Yong-Huan Wang Yun Zhang +19 位作者 Yu Liu Xiao Tan Ce Ma Yue-Chao Wang Qiang Zhang Deng-Peng Yuan Dan Jian Jian Wu Chao Lai Xi-Yang Wang Xue-Bing Luo Qiu-Yun Chen Wei Feng Qin Liu Qun-Qing Hao Yi Liu Shi-Yong Tan Xie-Gang Zhu Hai-Feng Song Xin-Chun Lai 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第8期165-172,共8页
The hybridization between the localized 4f level(f) with conduction(c) electrons in γ-Ce upon cooling has been previously revealed in single crystalline thin films experimentally and theoretically, whereas its influe... The hybridization between the localized 4f level(f) with conduction(c) electrons in γ-Ce upon cooling has been previously revealed in single crystalline thin films experimentally and theoretically, whereas its influence on the γ → α phase transition was not explicitly verified, due to the fact that the phase transition happened in the bulk-layer, leaving the surface in the γ phase. Here in our work, we circumvent this issue by investigating the effect of alloying addition of La on Ce, by means of crystal structure, electronic transport and angle resolved photoemission spectroscopy measurements, together with a phenomenological periodic Anderson model and a modified Anderson impurity model. Our current researches indicate that the weakening of f–c hybridization is the major factor in the suppression of γ → α phase transition by La doping. The consistency of our results with the effects of other rare earth and actinide alloying additions on the γ → α phase transition of Ce is also discussed. Our work demonstrates the importance of the interaction between f and c electrons in understanding the unconventional phase transition in Ce, which is intuitive for further researches on other rare earth and actinide metals and alloys with similar phase transition behaviors. 展开更多
关键词 structural phase transition molecular beam epitaxy ARPES f-electron system
在线阅读 下载PDF
Structural phase transition, precursory electronic anomaly, and strong-coupling superconductivity in quasi-skutterudite (Sr1-xCax)3Ir4Sn13 and Ca3Rh4Sn13
6
作者 Jun Luo Jie Yang +2 位作者 S Maeda Zheng Li Guo-Qing Zheng 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第7期163-170,共8页
The interplay between superconductivity and structural phase transition has attracted enormous interest in recent years. For example, in Fe-pnictide high temperature superconductors, quantum fluctuations in associatio... The interplay between superconductivity and structural phase transition has attracted enormous interest in recent years. For example, in Fe-pnictide high temperature superconductors, quantum fluctuations in association with structural phase transition have been proposed to lead to many novel physical properties and even the superconductivity itself. Here we report a finding that the quasi-skutterudite superconductors (Sr1-xCax)3Ir4Sn13 (x = 0, 0.5, 1) and Ca3Rh4Snl3 show some unusual properties similar to the Fe-pnictides, through 119Sn nuclear magnetic resonance (NMR) measurements. In (Sr1-xCax)3Ir4Sn13, the NMR linewidth increases below a temperature T* that is higher than the structural phase transition temperature Ts. The spin-lattice relaxation rate (1/T1 ) divided by temperature (T), 1/TI T and the Knight shift K increase with decreasing T down to T*, but start to decrease below T*, and followed by more distinct changes at Ts. In contrast, none of the anomalies is observed in Ca3Rh4Sn13 that does not undergo a structural phase transition. The precursory phenomenon above the structural phase transition resembles that occurring in Fe-pnictides. In the superconducting state of Ca3Ir4Sn13, 1/T1 decays as exp(-△/kBT) with a large gap △ = 2.21kBTc, yet without a Hebel-Slichter coherence peak, which indicates strong-coupling superconductivity. Our results provide new insight into the relationship between superconductivity and the electronic-structure change associated with structural phase transition. 展开更多
关键词 nuclear magnetic resonance antiferromagnetic fluctuation structural phase transition phase diagram
在线阅读 下载PDF
Structural Phase Transitions of ZnTe under High Pressure Using Experiments and Calculations
7
作者 程虎 李延春 +1 位作者 李工 李晓东 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第9期95-99,共5页
The pressure-induced structural transitions of ZnTe are investigated at pressures up to 59.2 GPa in a diamond anvil cell by using synchrotron powder x-ray diffraction method. A phase transition from the initial zinc b... The pressure-induced structural transitions of ZnTe are investigated at pressures up to 59.2 GPa in a diamond anvil cell by using synchrotron powder x-ray diffraction method. A phase transition from the initial zinc blende (ZB, ZnTe-Ⅰ) structure to a cinnabar phase (ZnTe-Ⅱ) is observed at 9.6 GPa, followed by a high pressure orthorhombic phase (ZnTe-Ⅲ) with Cmcm symmetry at 12.1 GPa. The ZB, cinnabar (space group P3121), Cmcm, P31 and rock salt structures of ZnTe are investigated by using density functional theory calculations. Based on the experiments and calculations, the ZnTe-Ⅱ phase is determined to have a cinnabar structure rather than a P3 1 symmetry. 展开更多
关键词 ZNTE of Structural phase Transitions of ZnTe under High Pressure Using Experiments and Calculations in
在线阅读 下载PDF
High-pressure structures of InBi predicted by particle swarm optimization algorithm
8
作者 Liu Huan-Huan Liu Yan-Hui 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第2期393-397,共5页
We extensively explore the high-pressure structures of InBi by using a newly developed particle swarm optimization algorithm. An orthorhombic Imma structure is discovered to be stable from 43.7 GPa to 107.9 GPa, rulin... We extensively explore the high-pressure structures of InBi by using a newly developed particle swarm optimization algorithm. An orthorhombic Imma structure is discovered to be stable from 43.7 GPa to 107.9 GPa, ruling out the previously speculated cubic structure. Further increasing the pressure, we find a tetragonal P4/nmm structure which is energetically more favourable from 107.9 CPa to 200 GPa. Especially, the tetragonal P4/nmm structure is known to occur at high pressure in the structures of ZnO and MgTe. We also predict this structure to be a high-pressure structure of ZnTe. Thus the tetragonal P4/nmm structure may be a universal high-pressure structure of the Ⅱ-Ⅵ and the Ⅲ-Ⅴ compounds. 展开更多
关键词 InBi structure prediction phase transitions
在线阅读 下载PDF
Structural Phase Transition and a Mutation of Electron Mobility in Zn_xCd_(1-x)O Alloys
9
作者 Ya-Wei Zhang Kai-Ke Yang Hui-Xiong Deng 《Chinese Physics Letters》 SCIE CAS CSCD 2018年第5期87-90,共4页
We investigate the electronic structures and phase stability of ZnO, CdO and the related alloys in rocksalt(B1)and wurzite(B4) crystal, using the first-principle density functional theory within the hybrid functio... We investigate the electronic structures and phase stability of ZnO, CdO and the related alloys in rocksalt(B1)and wurzite(B4) crystal, using the first-principle density functional theory within the hybrid functional approximation. By varying the concentration of Zn components from 0% to 100%, we find that the Zn_xCd(1-x)O alloy undergoes a phase transition from octahedron to tetrahedron at x = 0.32, in agreement with the recent experimental findings. The phase transition leads to a mutation of the electron mobility originated from the changes of the effective mass. Our results qualify Zn O/Cd O alloy as an attractive candidate for photo-electrochemical and solar cell power applications. 展开更多
关键词 Structural phase Transition and a Mutation of Electron Mobility in Zn_xCd x)O Alloys ZN
在线阅读 下载PDF
Comparison of conventional and inverted structures in fullerene-free organic solar cells
10
作者 Yifan Wang Huitao Bai Xiaowei Zhan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2015年第6期744-749,共6页
A n-type small molecule DC-IDT2E with 4,4,9,9-tetrakis(4-hexylphenyl)-indaceno[1,2-b:5,6-bt]dithiophene as a central building block, furan as rr-bridges, and 1,1 -dicyanomethylene-3-indanone as end acceptor groups,... A n-type small molecule DC-IDT2E with 4,4,9,9-tetrakis(4-hexylphenyl)-indaceno[1,2-b:5,6-bt]dithiophene as a central building block, furan as rr-bridges, and 1,1 -dicyanomethylene-3-indanone as end acceptor groups, was synthesized and used as an electron acceptor in solution-processed organic solar cells (OSCs). DC-IDT2F exhibited good thermal stability, broad and strong absorption in 500-850 rim, a narrow bandgap of 1.54 eV, LUMO of-3.88 eV, HOMO of-5.44 eV and an electron mobility of 6.5 × 10-4 cm2/(V.s). DC-IDT2F-based OSCs with conventional and inverted structures exhibited power conversion efficiencies of 2.26 and 3.08% respec- tively. The effect of vertical phase separation and morphology of the active layer on the device performance in the two structures was studied. 展开更多
关键词 Organic solar cells Non-fullerene acceptors Fullerene free Vertical phase separation Inverted structure
在线阅读 下载PDF
Pressure-induced structural transitions and metallization in ZrSe_(2)
11
作者 Yiping Gao Chenchen Liu +3 位作者 Can Tian Chengcheng Zhu Xiaoli Huang Tian Cui 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第12期21-25,共5页
High-pressure studies of two-dimensional materials have revealed numerous novel properties and physical mechanisms behind them.As a typical material of transition metal dichalcogenides(TMDs),ZrSe_(2)exhibits high carr... High-pressure studies of two-dimensional materials have revealed numerous novel properties and physical mechanisms behind them.As a typical material of transition metal dichalcogenides(TMDs),ZrSe_(2)exhibits high carrier mobility,rich electronic states regulated by doping,and high potential in applications at ambient pressure.However,the properties of ZrSe_(2)under pressure are still not clear,especially for the structural and electrical properties.Here,we report the investigation of ZrSe_(2)under pressure up to 66.5 GPa by in-situ x-ray diffraction,Raman,electrical transport measurements,and first-principles calculations.Two structural phase transitions occur in ZrSe_(2)at 8.3 GPa and 31.5 GPa,from P-3m1 symmetry to P2_(1)/m symmetry,and finally transformed into a non-layer I4/mmm symmetry structure.Pressure-induced metallic transition is observed at around 19.4 GPa in phaseⅡwhich aligns well with the results of the calculation.Our work will help to improve the understanding of the evolution of the structure and electrical transport properties of two-dimensional materials. 展开更多
关键词 high pressure transition metal dichalcogenides structure phase transition electrical transport properties
在线阅读 下载PDF
Non-Kramers doublet ground state in a quaternary cubic compound PrRu_(2)In_(2)Zn_(18) investigated by ultrasonic measurements
12
作者 张化远 Kazuhei Wakiya +2 位作者 Mitsuteru Nakamura Masahito Yoshizawa Yoshiki Nakanish 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第6期405-411,共7页
We performed ultrasonic measurements on a quaternary cubic compound PrRu_(2)In_(2)Zn_(18) to explore the ground state properties derived from non-Kramers Γ_(3) doublet of Pr^(3+).PrRu_(2)In_(2)Zn_(18) is a quaternary... We performed ultrasonic measurements on a quaternary cubic compound PrRu_(2)In_(2)Zn_(18) to explore the ground state properties derived from non-Kramers Γ_(3) doublet of Pr^(3+).PrRu_(2)In_(2)Zn_(18) is a quaternary derivative of the ternary compound PrRu_(2)Zn_(20) that exhibits a structural phase transition at T_S=138 K.In PrRu_(2)In_(2)Zn_(18),the Zn atoms at the 16c site in PrRu_(2)Zn_(20) are selectively replaced by In atoms.A monotonic increase was observed in the temperature dependence of elastic constants C_L=(C_(11)+2C_(12)+4C_(44))/3 and C_(T)=(C_(11)-C_(12)+C_(44))/3 in the temperature range around T_(S) to which an elastic softening was observed in(C_(11)-C_(12))/2 for PrRu_(2)Zn_(20).The disappearance of the softening indicates that the structural transition in PrRu_(2)Zn_(20) is suppressed by the substitution of Zn ions by In ones with a larger ionic radius.Alternatively,the C_(T) of PrRu_(2)In_(2)Zn_(18) exhibits a precursor Curie-type elastic softening toward low temperatures being responsible for the non-Kramers Γ_(3) ground state.We discuss the ground state and the evolution of the elastic properties of the different single-crystal samples of PrRu_(2)In_(2)Zn_(18) grown under different conditions. 展开更多
关键词 ultrasonic measurements non-Kramers doublet structural phase transition crystalline electric field effect
在线阅读 下载PDF
Event plane determination from the zero degree calorimeter at the cooling storage ring external-target experiment 被引量:1
13
作者 Li-Ke Liu Hua Pei +3 位作者 Ya-Ping Wang Biao Zhang Nu Xu Shu-Su Shi 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第7期113-121,共9页
The Cooling Storage Ring external-target experiment(CEE)spectrometer is used to study the nuclear matter created in heavy-ion collisions at√sNN=2.1-2.4 GeV with the aim to reveal the quantum chromodynamics phase stru... The Cooling Storage Ring external-target experiment(CEE)spectrometer is used to study the nuclear matter created in heavy-ion collisions at√sNN=2.1-2.4 GeV with the aim to reveal the quantum chromodynamics phase structure in the high-baryon-density region.Collective flow is considered an effective probe for evaluating the properties of media during high-energy nuclear collisions.One of the main functions of the zero-degree calorimeter(ZDC),a subdetector system in the CEE,is to determine the reaction plane in heavy-ion collisions.This step is crucial for measuring the collective flow and other reaction-plane-related analyses.In this paper,we illustrate the procedures for event plane determination using the ZDC.Finally,isospin-dependent quantum molecular dynamics model-based predictions of the rapidity dependence of the directed and elliptical flows for p,d,t,3He,and 4He,produced in 2.1 GeV U+U collisions,are presented. 展开更多
关键词 QCD phase structure Heavy-ion collisions Collective flow Reaction plane Zero-degree calorimeter
在线阅读 下载PDF
Effect of Sulfurization Temperature on Thioetherification Performance of Mo-Ni/Al_2O_3 Catalyst 被引量:1
14
作者 Shen Zhibing Ke Ming +2 位作者 Ren Tao Zhang Juntao Liang Shengrong 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2015年第4期55-61,共7页
The Mo modified Ni/Al_2O_3 catalysts were prepared and sulfided at different temperatures, and their catalytic activity for thioetherification of mercaptans and olefins(or dienes), hydrogenation of dienes and olefins ... The Mo modified Ni/Al_2O_3 catalysts were prepared and sulfided at different temperatures, and their catalytic activity for thioetherification of mercaptans and olefins(or dienes), hydrogenation of dienes and olefins in the thioetherification process using fluidized catalytic cracking(FCC) naphtha as the feedstock was investigated. In order to disclose the correlation between the physicochemical characteristics of catalysts and their catalytic activity, the surface structures and properties of the catalysts sulfided at different temperatures were characterized by the high resolution transmission electronic microscopy(HRTEM), X-ray photoelectron spectroscopy(XPS) and H2-temperature programmed reduction(H_2-TPR) technique. The results showed that an increase of sulfurization temperature not only could promote the sulfurization degree of active metals on the catalysts, but also could adjust the micro-morphology of active species. These changes could improve the catalytic performance of thioetherification, and hydrogenation of dienes and olefins. However, an excess sulfurization temperature was more easily to upgrade the ability of the catalyst for hydrogenation of olefins, which could lead to a decrease of the octane number of the product. It was also showed that a moderate sulfurization temperature not only could improve the catalytic performance of thioetherification and hydrogenation of dienes but also could control hydrogenation of olefins. 展开更多
关键词 sulfurization temperature thioetherification Mo-Ni/Al_2O_3 catalysts active structure Ni-Mo-S phase
在线阅读 下载PDF
Structural evolution and bandgap modulation of layeredβ-GeSe_(2)single crystal under high pressure
15
作者 Hengli Xie Jiaxiang Wang +6 位作者 Lingrui Wang Yong Yan Juan Guo Qilong Gao Mingju Chao Erjun Liang Xiao Ren 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第7期428-435,共8页
Germanium diselenide(GeSe_(2))is a promising candidate for electronic devices because of its unique crystal structure and optoelectronic properties.However,the evolution of lattice and electronic structure ofβ-GeSe_(... Germanium diselenide(GeSe_(2))is a promising candidate for electronic devices because of its unique crystal structure and optoelectronic properties.However,the evolution of lattice and electronic structure ofβ-GeSe_(2)at high pressure is still uncertain.Here we prepared high-qualityβ-GeSe_(2)single crystals by chemical vapor transfer(CVT)technique and performed systematic experimental studies on the evolution of lattice structure and bandgap ofβ-GeSe_(2)under pressure.High-precision high-pressure ultra low frequency(ULF)Raman scattering and synchrotron angle-dispersive x-ray diffraction(ADXRD)measurements support that no structural phase transition exists under high pressure up to 13.80 GPa,but the structure ofβ-GeSe_(2)turns into a disordered state near 6.91 GPa and gradually becomes amorphous forming an irreversibly amorphous crystal at 13.80 GPa.Two Raman modes keep softening abnormally upon pressure.The bandgap ofβ-GeSe_(2)reduced linearly from 2.59 eV to 1.65 eV under pressure with a detectable narrowing of 36.5%,and the sample under pressure performs the piezochromism phenomenon.The bandgap after decompression is smaller than that in the atmospheric pressure environment,which is caused by incomplete recrystallization.These results enrich the insight into the structural and optical properties ofβ-GeSe_(2)and demonstrate the potential of pressure in modulating the material properties of two-dimensional(2D)Ge-based binary material. 展开更多
关键词 high pressure structural phase transition Raman spectroscopy scattering layered material
在线阅读 下载PDF
High-performance KNN-based piezoelectric ceramics for buzzer application
16
作者 Cheng Xiong Bosen Li +2 位作者 Zhongxin Liao Yan Qiu Daqiang Gao 《Chinese Physics B》 2025年第4期591-596,共6页
Piezoelectric ceramic materials are important components of piezoelectric buzzers,where the parameter of inverse piezoelectric coefficient(d_(33)^(*))plays a decisive role in the performance of the buzzer.Here,we repo... Piezoelectric ceramic materials are important components of piezoelectric buzzers,where the parameter of inverse piezoelectric coefficient(d_(33)^(*))plays a decisive role in the performance of the buzzer.Here,we report the manufacture and performance of a lead-free ceramic-based(0.96(K_(0.5)Na_(0.5))(Nb_(0.96)Sb_(0.04))O_(3)-0.04(Bi_(0.5)Na_(0.5))ZrO_(3)-1 mol%Al_(2)O_(3),abbreviated as KNNS-BNZ-1 mol%Al_(2)O_(3))piezoelectric buzzer and compare it with commercial(PbZr_(0.5)Ti_(0.5)O_(3),abbreviated as PZT)ceramics.Briefly,KNN-based ceramics have a typical perovskite structure and piezoelectric properties of d_(33)=480 pC/N,k_(p)=0.62 and d_(33)^(*)=830 pm/V,compared to d_(33)=500 pC/N,k_(p)=0.6 and d_(33)^(*)=918 pm/V of the commercial PZT-4 ceramics.Our results show that the KNNS-BNZ-1 mol%Al_(2)O_(3)ceramics have a similar sound pressure level performance over the testing frequency range to commercial PZT ceramics(which is even better in the 3-4 kHz range).These findings highlight the great application potential of KNN-based piezoelectric ceramics. 展开更多
关键词 lead-free piezoelectric ceramics phase structure engineering buzzer atomizer
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部