Objective:Polycystic ovary syndrome(PCOS)is a common endocrine disorder that affects women’s health.This study aims to investigate gene and transcription factor(TF)expression differences between PCOS patients and hea...Objective:Polycystic ovary syndrome(PCOS)is a common endocrine disorder that affects women’s health.This study aims to investigate gene and transcription factor(TF)expression differences between PCOS patients and healthy individuals using bioinformatics approaches,and to verify the function of key transcription factors,with the goal of providing new insights into the pathogenesis of PCOS.Methods:Differentially expressed genes(DEGs)and differentially expressed transcription factors(DETFs)between PCOS patients and controls were identified from the RNA sequencing dataset GSE168404 using bioinformatics methods.Functional enrichment analysis was performed using Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)databases.The expression and function of core transcription factors were further validated in ovarian tissues of PCOS model mice and control mice using Western blotting and reverse transcription quantitative polymerase chain reaction(RTqPCR).Results:A total of 332 DEGs were identified between PCOS patients and controls,including 259 upregulated and 73 downregulated genes in the PCOS group.19 DETFs were further screened,of which 16 were upregulated and 3 were downregulated in PCOS.The upregulated DETFs(including TFCP2L1,DACH1,ESR2,AFF3,SMAD9,ZNF331,HOPX,ATOH8,HIF3α,DPF3,HOXC4,HES1,ID1,JDP2,SOX4,and ID3)were primarily associated with lipid metabolism,development,and cell adhesion.Protein and mRNA expression analysis in PCOS model mice revealed significantly decreased levels of hypoxia-inducible factor(HIF)1αand HIF2α,and significantly increased expression of HIF3αcompared to control mice(all P<0.001).Conclusion:Significant differences in gene and TF expression exist between PCOS patients and healthy individuals.HIF-3αmay play a crucial role in PCOS and could serve as a novel biomarker for diagnosis and a potential therapeutic target.展开更多
Cardiac arrest(CA)is a critical condition in the field of cardiovascular medicine.Despite successful resuscitation,patients continue to have a high mortality rate,largely due to post CA syndrome(PCAS).However,the inju...Cardiac arrest(CA)is a critical condition in the field of cardiovascular medicine.Despite successful resuscitation,patients continue to have a high mortality rate,largely due to post CA syndrome(PCAS).However,the injury and pathophysiological mechanisms underlying PCAS remain unclear.Experimental animal models are valuable tools for exploring the etiology,pathogenesis,and potential interventions for CA and PCAS.Current CA animal models include electrical induction of ventricular fibrillation(VF),myocardial infarction,high potassium,asphyxia,and hemorrhagic shock.Although these models do not fully replicate the complexity of clinical CA,the mechanistic insights they provide remain highly relevant,including post-CA brain injury(PCABI),post-CA myocardial dysfunction(PAMD),systemic ischaemia/reperfusion injury(IRI),and the persistent precipitating pathology.Summarizing the methods of establishing CA models,the challenges encountered in the modeling process,and the mechanisms of PCAS can provide a foundation for developing standardized CA modeling protocols.展开更多
基金supported by the Natural Science Foundation of Hunan Province,China(2022JJ30886).
文摘Objective:Polycystic ovary syndrome(PCOS)is a common endocrine disorder that affects women’s health.This study aims to investigate gene and transcription factor(TF)expression differences between PCOS patients and healthy individuals using bioinformatics approaches,and to verify the function of key transcription factors,with the goal of providing new insights into the pathogenesis of PCOS.Methods:Differentially expressed genes(DEGs)and differentially expressed transcription factors(DETFs)between PCOS patients and controls were identified from the RNA sequencing dataset GSE168404 using bioinformatics methods.Functional enrichment analysis was performed using Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)databases.The expression and function of core transcription factors were further validated in ovarian tissues of PCOS model mice and control mice using Western blotting and reverse transcription quantitative polymerase chain reaction(RTqPCR).Results:A total of 332 DEGs were identified between PCOS patients and controls,including 259 upregulated and 73 downregulated genes in the PCOS group.19 DETFs were further screened,of which 16 were upregulated and 3 were downregulated in PCOS.The upregulated DETFs(including TFCP2L1,DACH1,ESR2,AFF3,SMAD9,ZNF331,HOPX,ATOH8,HIF3α,DPF3,HOXC4,HES1,ID1,JDP2,SOX4,and ID3)were primarily associated with lipid metabolism,development,and cell adhesion.Protein and mRNA expression analysis in PCOS model mice revealed significantly decreased levels of hypoxia-inducible factor(HIF)1αand HIF2α,and significantly increased expression of HIF3αcompared to control mice(all P<0.001).Conclusion:Significant differences in gene and TF expression exist between PCOS patients and healthy individuals.HIF-3αmay play a crucial role in PCOS and could serve as a novel biomarker for diagnosis and a potential therapeutic target.
基金supported by the National Key Research and Development Program(2021YFC3002205)the Postgraduate Research and Innovation Program of Tianjin Municipal Education Commission(2022BKY113),China.
文摘Cardiac arrest(CA)is a critical condition in the field of cardiovascular medicine.Despite successful resuscitation,patients continue to have a high mortality rate,largely due to post CA syndrome(PCAS).However,the injury and pathophysiological mechanisms underlying PCAS remain unclear.Experimental animal models are valuable tools for exploring the etiology,pathogenesis,and potential interventions for CA and PCAS.Current CA animal models include electrical induction of ventricular fibrillation(VF),myocardial infarction,high potassium,asphyxia,and hemorrhagic shock.Although these models do not fully replicate the complexity of clinical CA,the mechanistic insights they provide remain highly relevant,including post-CA brain injury(PCABI),post-CA myocardial dysfunction(PAMD),systemic ischaemia/reperfusion injury(IRI),and the persistent precipitating pathology.Summarizing the methods of establishing CA models,the challenges encountered in the modeling process,and the mechanisms of PCAS can provide a foundation for developing standardized CA modeling protocols.