A model of vibrating device coupling two pendulums (VDP) which is highly nonlinear was put forward to conduct vibration analysis. Based on energy analysis, dynamic equations with cubic nonlinearities were established ...A model of vibrating device coupling two pendulums (VDP) which is highly nonlinear was put forward to conduct vibration analysis. Based on energy analysis, dynamic equations with cubic nonlinearities were established using Lagrange's equation. In order to obtain approximate solution, multiple time scales method, one of perturbation technique, was applied. Cases of non-resonant and 1:1:2:2 internal resonant were discussed. In the non-resonant case, the validity of multiple time scales method is confirmed, comparing numerical results derived from fourth order Runge-Kutta method with analytical results derived from first order approximate expression. In the 1:1:2:2 internal resonant case, modal amplitudes of Aa1 and Ab2 increase, respectively, from 0.38 to 0.63 and from 0.19 to 0.32, while the corresponding frequencies have an increase of almost 1.6 times with changes of initial conditions, indicating the existence of typical nonlinear phenomenon. In addition, the chaotic motion is found under this condition.展开更多
The swinging-loading process is essential for automatic artillery loading systems.This study focuses on the problems of reliability analysis that affect swinging-loading positioning accuracy.A dynamic model for a mult...The swinging-loading process is essential for automatic artillery loading systems.This study focuses on the problems of reliability analysis that affect swinging-loading positioning accuracy.A dynamic model for a multi degree-of-freedom swinging-loading-integrated rigid-flexible coupling system is established.This model is based on the identification of key parameters and platform experiments.Based on the spatial geometric relationship between the breech and loader during modular charge transfer and the possible maximum interference depth of the modular charge,a new failure criterion for estimating the reliability of swinging-loading positioning accuracy is proposed.Considering the uncertainties in the operation of the pendulum loader,the direct probability integration method is introduced to analyze the reliability of the swinging-loading positioning accuracy under three different charge numbers.The results indicate that under two and four charges,the swinging-loading process shows outstanding reliability.However,an unstable stage appears when the swinging motion occurred under six charges,with a maximum positioning failure probability of 0.0712.A comparison between the results obtained under the conventional and proposed criteria further reveals the effectiveness and necessity of the proposed criterion.展开更多
A hypersonic aerodynamics analysis of an electromagnetic gun(EM gun) launched projectile configuration is undertaken in order to ameliorate the basic aerodynamic characteristics in comparison with the regular projecti...A hypersonic aerodynamics analysis of an electromagnetic gun(EM gun) launched projectile configuration is undertaken in order to ameliorate the basic aerodynamic characteristics in comparison with the regular projectile layout.Static margin and pendulum motion analysis models have been applied to evaluate the flight stability of a new airframe configuration.With a steady state computational fluid dynamics(CFD) simulation,the basic density,pressure and velocity contours of the EM gun projectile flow field at Mach number 5.0,6.0 and 7.0(angle of attack=0°) have been analyzed.Furthermore,the static margin values are enhanced dramatically for the EM gun projectile with configuration optimization.Drag,lift and pitch property variations are all illustrated with the changes of Mach number and angle of attack.A particle ballistic calculation was completed for the pendulum analysis.The results show that the configuration optimized projectile,launched from the EM gun at Mach number 5.0 to 7.0,acts in a much more stable way than the projectiles with regular aerodynamic layout.展开更多
On the basis of the gain-scheduled H∞ design strategy, a novel active fault-tolerant control scheme is proposed. Under the assumption that the effects of faults on the state-space matrices of systems can be of affine...On the basis of the gain-scheduled H∞ design strategy, a novel active fault-tolerant control scheme is proposed. Under the assumption that the effects of faults on the state-space matrices of systems can be of affine parameter dependence, a reconfigurable robust H∞ linear parameter varying controller is developed. The designed controller is a function of the fault effect factors that can be derived online by using a well-trained neural network. To demonstrate the effectiveness of the proposed method, a double inverted pendulum system, with a fault in the motor tachometer loop, is considered.展开更多
Polypropylene(PP) fibres have primarily used to control shrinkage cracks or mitigate explosive spalling in concrete structures exposed to fire or subjected to impact/blast loads, with limited investigations on capacit...Polypropylene(PP) fibres have primarily used to control shrinkage cracks or mitigate explosive spalling in concrete structures exposed to fire or subjected to impact/blast loads, with limited investigations on capacity improvement. This study unveils the possibility of using PP micro-fibres to improve the impact behaviour of fibre-reinforced ultra-high-performance concrete(FRUHPC) columns. Results show that the addition of fibres significantly improves the impact behaviour of FRUHPC columns by shifting the failure mechanism from brittle shear to favourable flexural failure. The addition of steel or PP fibres affected the impact responses differently. Steel fibres considerably increased the peak impact force(up to 18%) while PP micro-fibres slightly increased the peak(3%-4%). FRUHPC significantly reduced the maximum midheight displacement by up to 30%(under 20°impact) and substantially improved the displacement recovery by up to 100%(under 20° impact). FRUHPC with steel fibres significantly improved the energy absorption while those with PP micro-fibres reduced the energy absorption, which is different from the effect of PP-macro fibre reported in the literature. The optimal fibre content for micro-PP fibres is 1% due to its minimal fibre usage and low peak and residual displacement. This study highlights the potential of FRUHPC as a promising material for impact-resistant structures by creating a more favourable flexural failure mechanism, enhancing ductility and toughness under impact loading, and advancing the understanding of the role of fibres in structural performance.展开更多
Integrator forwarding is a recursive nonlinear design technique for the stabilization of feed-forward systems. However, this method still has some limitation. An improved design method is proposed to extend the field ...Integrator forwarding is a recursive nonlinear design technique for the stabilization of feed-forward systems. However, this method still has some limitation. An improved design method is proposed to extend the field of application of this technique. This method is used to design a stabilizer for the inertia wheel pendulum system. Moreover, it is shown that the control Lyapunov function which is obtained from this method can also be used to design a globally asymptotically stabilizing controller with optimality.展开更多
The dynamics of 2DOF spherical inverted pendulum system is analyzed. The motion of the pendulum may be projected onto the orthogonal planes in the Cartesian Space. In this way the system can be decoupled into two clas...The dynamics of 2DOF spherical inverted pendulum system is analyzed. The motion of the pendulum may be projected onto the orthogonal planes in the Cartesian Space. In this way the system can be decoupled into two classical cart-pendulum systems and the design of controllers aimed at each subsystem separately are proposed. The linear quadratic optimal control strategy is applied in order to balance the pendulum system at the 'inverted' status. The method proposed is verified by the simulation and actual system experiments and the performance of the controller is discussed.展开更多
This paper mainly focuses on stability analysis of the nonlinear active disturbance rejection control(ADRC)-based control system and its applicability to real world engineering problems.Firstly,the nonlinear ADRC(NLAD...This paper mainly focuses on stability analysis of the nonlinear active disturbance rejection control(ADRC)-based control system and its applicability to real world engineering problems.Firstly,the nonlinear ADRC(NLADRC)-based control system is transformed into a multi-input multi-output(MIMO)Lurie-like system,then sufficient condition for absolute stability based on linear matrix inequality(LMI)is proposed.Since the absolute stability is a kind of global stability,Lyapunov stability is further considered.The local asymptotical stability can be deter-mined by whether a matrix is Hurwitz or not.Using the inverted pendulum as an example,the proposed methods are verified by simulation and experiment,which show the valuable guidance for engineers to design and analyze the NL ADRC-based control system.展开更多
基金Projects(50574091, 50774084) supported by the National Natural Science Foundation of ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions+1 种基金Project(CXLX12_0949) supported by Research and Innovation Project for College Graduates of Jiangsu Province, ChinaProject(2013DXS03) supported by the Fundamental Research Funds for the Central Universities, China
文摘A model of vibrating device coupling two pendulums (VDP) which is highly nonlinear was put forward to conduct vibration analysis. Based on energy analysis, dynamic equations with cubic nonlinearities were established using Lagrange's equation. In order to obtain approximate solution, multiple time scales method, one of perturbation technique, was applied. Cases of non-resonant and 1:1:2:2 internal resonant were discussed. In the non-resonant case, the validity of multiple time scales method is confirmed, comparing numerical results derived from fourth order Runge-Kutta method with analytical results derived from first order approximate expression. In the 1:1:2:2 internal resonant case, modal amplitudes of Aa1 and Ab2 increase, respectively, from 0.38 to 0.63 and from 0.19 to 0.32, while the corresponding frequencies have an increase of almost 1.6 times with changes of initial conditions, indicating the existence of typical nonlinear phenomenon. In addition, the chaotic motion is found under this condition.
文摘The swinging-loading process is essential for automatic artillery loading systems.This study focuses on the problems of reliability analysis that affect swinging-loading positioning accuracy.A dynamic model for a multi degree-of-freedom swinging-loading-integrated rigid-flexible coupling system is established.This model is based on the identification of key parameters and platform experiments.Based on the spatial geometric relationship between the breech and loader during modular charge transfer and the possible maximum interference depth of the modular charge,a new failure criterion for estimating the reliability of swinging-loading positioning accuracy is proposed.Considering the uncertainties in the operation of the pendulum loader,the direct probability integration method is introduced to analyze the reliability of the swinging-loading positioning accuracy under three different charge numbers.The results indicate that under two and four charges,the swinging-loading process shows outstanding reliability.However,an unstable stage appears when the swinging motion occurred under six charges,with a maximum positioning failure probability of 0.0712.A comparison between the results obtained under the conventional and proposed criteria further reveals the effectiveness and necessity of the proposed criterion.
基金supported by Youth Science and Technology Research FundShanxi Province Applied Basic Research Projectgrant number 201801D221039+2 种基金Science Foundation of North University of China grant number XJJ201813Scientific and Technologial Innovation Programs of Higher Education Institutions in Shanxi grant number 2019L0570Aeronautical Science Foundation of China grant number 2019020U0002。
文摘A hypersonic aerodynamics analysis of an electromagnetic gun(EM gun) launched projectile configuration is undertaken in order to ameliorate the basic aerodynamic characteristics in comparison with the regular projectile layout.Static margin and pendulum motion analysis models have been applied to evaluate the flight stability of a new airframe configuration.With a steady state computational fluid dynamics(CFD) simulation,the basic density,pressure and velocity contours of the EM gun projectile flow field at Mach number 5.0,6.0 and 7.0(angle of attack=0°) have been analyzed.Furthermore,the static margin values are enhanced dramatically for the EM gun projectile with configuration optimization.Drag,lift and pitch property variations are all illustrated with the changes of Mach number and angle of attack.A particle ballistic calculation was completed for the pendulum analysis.The results show that the configuration optimized projectile,launched from the EM gun at Mach number 5.0 to 7.0,acts in a much more stable way than the projectiles with regular aerodynamic layout.
文摘On the basis of the gain-scheduled H∞ design strategy, a novel active fault-tolerant control scheme is proposed. Under the assumption that the effects of faults on the state-space matrices of systems can be of affine parameter dependence, a reconfigurable robust H∞ linear parameter varying controller is developed. The designed controller is a function of the fault effect factors that can be derived online by using a well-trained neural network. To demonstrate the effectiveness of the proposed method, a double inverted pendulum system, with a fault in the motor tachometer loop, is considered.
基金the financial support from Australian Research Council(ARC)(Grant No.DP220100307).
文摘Polypropylene(PP) fibres have primarily used to control shrinkage cracks or mitigate explosive spalling in concrete structures exposed to fire or subjected to impact/blast loads, with limited investigations on capacity improvement. This study unveils the possibility of using PP micro-fibres to improve the impact behaviour of fibre-reinforced ultra-high-performance concrete(FRUHPC) columns. Results show that the addition of fibres significantly improves the impact behaviour of FRUHPC columns by shifting the failure mechanism from brittle shear to favourable flexural failure. The addition of steel or PP fibres affected the impact responses differently. Steel fibres considerably increased the peak impact force(up to 18%) while PP micro-fibres slightly increased the peak(3%-4%). FRUHPC significantly reduced the maximum midheight displacement by up to 30%(under 20°impact) and substantially improved the displacement recovery by up to 100%(under 20° impact). FRUHPC with steel fibres significantly improved the energy absorption while those with PP micro-fibres reduced the energy absorption, which is different from the effect of PP-macro fibre reported in the literature. The optimal fibre content for micro-PP fibres is 1% due to its minimal fibre usage and low peak and residual displacement. This study highlights the potential of FRUHPC as a promising material for impact-resistant structures by creating a more favourable flexural failure mechanism, enhancing ductility and toughness under impact loading, and advancing the understanding of the role of fibres in structural performance.
文摘Integrator forwarding is a recursive nonlinear design technique for the stabilization of feed-forward systems. However, this method still has some limitation. An improved design method is proposed to extend the field of application of this technique. This method is used to design a stabilizer for the inertia wheel pendulum system. Moreover, it is shown that the control Lyapunov function which is obtained from this method can also be used to design a globally asymptotically stabilizing controller with optimality.
文摘The dynamics of 2DOF spherical inverted pendulum system is analyzed. The motion of the pendulum may be projected onto the orthogonal planes in the Cartesian Space. In this way the system can be decoupled into two classical cart-pendulum systems and the design of controllers aimed at each subsystem separately are proposed. The linear quadratic optimal control strategy is applied in order to balance the pendulum system at the 'inverted' status. The method proposed is verified by the simulation and actual system experiments and the performance of the controller is discussed.
基金supported by the National Natural Science Foundation of China(61836001).
文摘This paper mainly focuses on stability analysis of the nonlinear active disturbance rejection control(ADRC)-based control system and its applicability to real world engineering problems.Firstly,the nonlinear ADRC(NLADRC)-based control system is transformed into a multi-input multi-output(MIMO)Lurie-like system,then sufficient condition for absolute stability based on linear matrix inequality(LMI)is proposed.Since the absolute stability is a kind of global stability,Lyapunov stability is further considered.The local asymptotical stability can be deter-mined by whether a matrix is Hurwitz or not.Using the inverted pendulum as an example,the proposed methods are verified by simulation and experiment,which show the valuable guidance for engineers to design and analyze the NL ADRC-based control system.