In order to enhance the control performance of piezo-positioning system,the influence of hysteresis characteristics and its compensation method are studied.Hammerstein model is used to represent the dynamic hysteresis...In order to enhance the control performance of piezo-positioning system,the influence of hysteresis characteristics and its compensation method are studied.Hammerstein model is used to represent the dynamic hysteresis nonlinear characteristics of piezo-positioning actuator.The static nonlinear part and dynamic linear part of the Hammerstein model are represented by models obtained through the Prandtl-Ishlinskii(PI)model and Hankel matrix system identification method,respectively.This model demonstrates good generalization capability for typical input frequencies below 200 Hz.A sliding mode inverse compensation tracking control strategy based on P-I inverse model and integral augmentation is proposed.Experimental results show that compared with PID inverse compensation control and sliding mode control without inverse compensation,the sliding mode inverse compensation control has a more ideal step response and no overshoot,moreover,the settling time is only 6.2 ms.In the frequency domain,the system closed-loop tracking bandwidth reaches 119.9 Hz,and the disturbance rejection bandwidth reaches 86.2 Hz.The proposed control strategy can effectively compensate the hysteresis nonlinearity,and improve the tracking accuracy and antidisturbance capability of piezo-positioning system.展开更多
The path-following control of the asymmetry underactuated unmanned surface vehicle(USV) under external disturbances such as unknown constant and irrational ocean currents is discussed, and an adaptive sliding-mode pat...The path-following control of the asymmetry underactuated unmanned surface vehicle(USV) under external disturbances such as unknown constant and irrational ocean currents is discussed, and an adaptive sliding-mode path-following control system is proposed, which comprises a path-variable updated law,a modified integral line-of-sight(ILOS) guidance law based on a time-varying lookahead distance and adaptive feedback linearizing controllers combined with sliding-mode technique. A more accurate USV model without the assumption of having diagonal inertia and damping matrices is first presented, aiming at improving the performance of the path-following control. Next, the coordinate transformation is adopted to decouple the sway dynamic from the rudder angle, and the path-following errors dynamics without non-singular problem are presented in the moving Frenet-Serret frame. Then, based on the cascaded theorem and the adaptive sliding-mode method, the adaptive control law of position errors and course error are designed, among which the lookahead distance and integral gain are all computed as different functions of cross-track error to estimate and compensate the sideslip angle caused by external disturbances adaptively. Finally, according to the Lyapunov and cascaded theorem, the control system proposed is proved to be uniform globally asymptotic stability(UGAS) and uniform semiglobal exponential stability(USGES) when the control objectives are all achieved. Simulation results illustrate the precision and high-quality performance of this new controller.展开更多
电力系统运行在非理想状态时,容易产生短暂的电压波动,此时并联有源电力滤波器(shunt active power filter,SAPF)采用无源控制策略无法高效、精确地调节电能质量,而常规滑模控制又容易引起抖振。针对上述情况,将无源控制和抗干扰能力更...电力系统运行在非理想状态时,容易产生短暂的电压波动,此时并联有源电力滤波器(shunt active power filter,SAPF)采用无源控制策略无法高效、精确地调节电能质量,而常规滑模控制又容易引起抖振。针对上述情况,将无源控制和抗干扰能力更强的超螺旋二阶滑模控制相结合,提出了一种无源超螺旋二阶滑模控制策略。首先,根据有源电力滤波器的数学模型建立基于正负序分离的欧拉−拉格朗日模型;其次,对系统的模型进行了无源性分析,且根据其无源性设计了无源控制器,同时采用超螺旋二阶滑模控制对无源控制器进一步优化,提高了系统整体的鲁棒性和抗干扰能力;最后,在理想状态和负载突变、负载不平衡、电网电压不平衡、单相电压突变4种非理想状态下,通过仿真实验验证了无源超螺旋二阶滑模控制策略的有效性和优越性。展开更多
文摘In order to enhance the control performance of piezo-positioning system,the influence of hysteresis characteristics and its compensation method are studied.Hammerstein model is used to represent the dynamic hysteresis nonlinear characteristics of piezo-positioning actuator.The static nonlinear part and dynamic linear part of the Hammerstein model are represented by models obtained through the Prandtl-Ishlinskii(PI)model and Hankel matrix system identification method,respectively.This model demonstrates good generalization capability for typical input frequencies below 200 Hz.A sliding mode inverse compensation tracking control strategy based on P-I inverse model and integral augmentation is proposed.Experimental results show that compared with PID inverse compensation control and sliding mode control without inverse compensation,the sliding mode inverse compensation control has a more ideal step response and no overshoot,moreover,the settling time is only 6.2 ms.In the frequency domain,the system closed-loop tracking bandwidth reaches 119.9 Hz,and the disturbance rejection bandwidth reaches 86.2 Hz.The proposed control strategy can effectively compensate the hysteresis nonlinearity,and improve the tracking accuracy and antidisturbance capability of piezo-positioning system.
基金supported by the National Social Science Foundation of China(15GJ003-278)the National Natural Science Foundation of China(71501182)
文摘The path-following control of the asymmetry underactuated unmanned surface vehicle(USV) under external disturbances such as unknown constant and irrational ocean currents is discussed, and an adaptive sliding-mode path-following control system is proposed, which comprises a path-variable updated law,a modified integral line-of-sight(ILOS) guidance law based on a time-varying lookahead distance and adaptive feedback linearizing controllers combined with sliding-mode technique. A more accurate USV model without the assumption of having diagonal inertia and damping matrices is first presented, aiming at improving the performance of the path-following control. Next, the coordinate transformation is adopted to decouple the sway dynamic from the rudder angle, and the path-following errors dynamics without non-singular problem are presented in the moving Frenet-Serret frame. Then, based on the cascaded theorem and the adaptive sliding-mode method, the adaptive control law of position errors and course error are designed, among which the lookahead distance and integral gain are all computed as different functions of cross-track error to estimate and compensate the sideslip angle caused by external disturbances adaptively. Finally, according to the Lyapunov and cascaded theorem, the control system proposed is proved to be uniform globally asymptotic stability(UGAS) and uniform semiglobal exponential stability(USGES) when the control objectives are all achieved. Simulation results illustrate the precision and high-quality performance of this new controller.
文摘电力系统运行在非理想状态时,容易产生短暂的电压波动,此时并联有源电力滤波器(shunt active power filter,SAPF)采用无源控制策略无法高效、精确地调节电能质量,而常规滑模控制又容易引起抖振。针对上述情况,将无源控制和抗干扰能力更强的超螺旋二阶滑模控制相结合,提出了一种无源超螺旋二阶滑模控制策略。首先,根据有源电力滤波器的数学模型建立基于正负序分离的欧拉−拉格朗日模型;其次,对系统的模型进行了无源性分析,且根据其无源性设计了无源控制器,同时采用超螺旋二阶滑模控制对无源控制器进一步优化,提高了系统整体的鲁棒性和抗干扰能力;最后,在理想状态和负载突变、负载不平衡、电网电压不平衡、单相电压突变4种非理想状态下,通过仿真实验验证了无源超螺旋二阶滑模控制策略的有效性和优越性。