期刊文献+
共找到914篇文章
< 1 2 46 >
每页显示 20 50 100
An ICPSO-RBFNN nonlinear inversion for electrical resistivity imaging 被引量:3
1
作者 江沸菠 戴前伟 董莉 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第8期2129-2138,共10页
To improve the global search ability and imaging quality of electrical resistivity imaging(ERI) inversion, a two-stage learning ICPSO algorithm of radial basis function neural network(RBFNN) based on information crite... To improve the global search ability and imaging quality of electrical resistivity imaging(ERI) inversion, a two-stage learning ICPSO algorithm of radial basis function neural network(RBFNN) based on information criterion(IC) and particle swarm optimization(PSO) is presented. In the proposed method, IC is applied to obtain the hidden layer structure by calculating the optimal IC value automatically and PSO algorithm is used to optimize the centers and widths of the radial basis functions in the hidden layer. Meanwhile, impacts of different information criteria to the inversion results are compared, and an implementation of the proposed ICPSO algorithm is given. The optimized neural network has one hidden layer with 261 nodes selected by AKAIKE's information criterion(AIC) and it is trained on 32 data sets and tested on another 8 synthetic data sets. Two complex synthetic examples are used to verify the feasibility and effectiveness of the proposed method with two learning stages. The results show that the proposed method has better performance and higher imaging quality than three-layer and four-layer back propagation neural networks(BPNNs) and traditional least square(LS) inversion. 展开更多
关键词 electrical resistivity imaging nonlinear inversion information criterion(IC) radial basis function neural network(RBFNN) particle swarm optimization(PSO)
在线阅读 下载PDF
Adaptive multi-feature tracking in particle swarm optimization based particle filter framework 被引量:7
2
作者 Miaohui Zhang Ming Xin Jie Yang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第5期775-783,共9页
This paper proposes a particle swarm optimization(PSO) based particle filter(PF) tracking framework,the embedded PSO makes particles move toward the high likelihood area to find the optimal position in the state t... This paper proposes a particle swarm optimization(PSO) based particle filter(PF) tracking framework,the embedded PSO makes particles move toward the high likelihood area to find the optimal position in the state transition stage,and simultaneously incorporates the newest observations into the proposal distribution in the update stage.In the proposed approach,likelihood measure functions involving multiple features are presented to enhance the performance of model fitting.Furthermore,the multi-feature weights are self-adaptively adjusted by a PSO algorithm throughout the tracking process.There are three main contributions.Firstly,the PSO algorithm is fused into the PF framework,which can efficiently alleviate the particles degeneracy phenomenon.Secondly,an effective convergence criterion for the PSO algorithm is explored,which can avoid particles getting stuck in local minima and maintain a greater particle diversity.Finally,a multi-feature weight self-adjusting strategy is proposed,which can significantly improve the tracking robustness and accuracy.Experiments performed on several challenging public video sequences demonstrate that the proposed tracking approach achieves a considerable performance. 展开更多
关键词 particle filter particle swarm optimization adaptive weight adjustment visual tracking
在线阅读 下载PDF
融合多策略的改进鹈鹕优化算法
3
作者 李智杰 赵铁柱 +3 位作者 李昌华 介军 石昊琦 杨辉 《控制工程》 北大核心 2025年第7期1184-1197,1206,共15页
针对鹈鹕优化算法在寻优过程中存在的种群多样性降低、收敛速度下降、易陷入局部最优等问题,融合多种策略对其进行改进,提出了改进鹈鹕优化算法(improved pelican optimization algorithm,IPOA)。首先,利用帐篷(tent)混沌映射和折射反... 针对鹈鹕优化算法在寻优过程中存在的种群多样性降低、收敛速度下降、易陷入局部最优等问题,融合多种策略对其进行改进,提出了改进鹈鹕优化算法(improved pelican optimization algorithm,IPOA)。首先,利用帐篷(tent)混沌映射和折射反向学习策略初始化鹈鹕种群,在增加种群多样性的同时为算法寻优能力的提升打下基础;然后,在鹈鹕逼近猎物阶段引入非线性惯性权重因子以提高算法的收敛速度;最后,引入樽海鞘群算法的领导者策略以协调算法的全局搜索能力和局部寻优能力。实验测试了单一改进策略的改进效果,并将IPOA与其他9种优化算法进行了对比。实验结果证明了各改进策略的有效性和IPOA的优越性和鲁棒性。 展开更多
关键词 鹈鹕优化算法 帐篷混沌映射 折射反向学习 非线性惯性权重因子 樽海鞘群算法
在线阅读 下载PDF
基于敏感度分析的球面磁悬浮飞轮电机多目标分层优化设计
4
作者 朱志莹 焦金帅 +2 位作者 徐政 孟凡浩 安聪 《电气工程学报》 北大核心 2025年第2期130-139,共10页
针对球面磁悬浮飞轮电机的参数优化设计问题,提出一种基于参数敏感度分析的多目标分层优化设计方案。在介绍电机运行机理及电磁分析的基础上,以转矩、悬浮力为优化目标,通过对电机结构参数进行敏感度分析,利用构建敏感度方程,将电机参... 针对球面磁悬浮飞轮电机的参数优化设计问题,提出一种基于参数敏感度分析的多目标分层优化设计方案。在介绍电机运行机理及电磁分析的基础上,以转矩、悬浮力为优化目标,通过对电机结构参数进行敏感度分析,利用构建敏感度方程,将电机参数划分为主敏感度参数和次敏感度参数,针对主敏感度参数和次敏感度参数,依次分别采用支持向量机进行非参数建模,并通过惯性权重自适应改变的混沌粒子群算法进行寻优;最后,通过有限元仿真验证了所提算法的有效性,结果表明优化后电机转矩提高6%,悬浮力提高27.99%。 展开更多
关键词 球面磁悬浮飞轮电机 参数敏感度分析 分层优化 支持向量机 惯性权重自适应改变的混沌粒子群算法
在线阅读 下载PDF
基于粒子群算法的零齿差内啮合机构优化
5
作者 王世杰 杨喆 《沈阳工业大学学报》 北大核心 2025年第1期61-66,共6页
【目的】针对潜油螺杆泵采油系统中联轴装置零齿差内啮合机构重合度低、内外齿轮齿厚系数不稳定以及齿厚偏薄易导致轮齿折断等问题,提出了一种优化机构内变位系数、提高重合度值的方法,并设计了相应的优化模型。【方法】分析了传统设计... 【目的】针对潜油螺杆泵采油系统中联轴装置零齿差内啮合机构重合度低、内外齿轮齿厚系数不稳定以及齿厚偏薄易导致轮齿折断等问题,提出了一种优化机构内变位系数、提高重合度值的方法,并设计了相应的优化模型。【方法】分析了传统设计方法中零齿差机构变位系数的设计缺陷,明确了目标函数和约束条件,定义了设计变量。采用粒子群优化(PSO)算法中的惯性权重线性递减策略提升粒子的局部与全局寻优能力,引入收缩因子并通过改进的速度更新迭代公式缩短收敛时间。以重合度和齿厚系数为优化目标函数,同时结合零齿差内啮合机构的齿轮约束条件建立了优化模型。【结果】为验证算法的稳定性,以用户输入的初始参数(内外齿轮模数为6,齿数为12,分度圆压力角为20°,外齿轮齿宽为30 mm,内齿轮齿宽为28 mm,偏心量范围为2.5~5 mm)进行优化分析。结果表明,通过改进PSO算法得到了径向变位系数和切向变位系数的最优解,即改进PSO算法显著提升了变位系数的优化效果。对比原始数据和优化结果,改进PSO算法的重合度提升了最高达26.2%,特别是在不同偏心量下,优化后的重合度均显著提高。【结论】通过对比改进前后的PSO算法,改进后的算法兼具全局收敛性与精确搜索能力,所得变位系数更加合理有效;优化后的齿厚系数更加平稳,显著降低了轮齿折断风险。最终优化后的变位系数不仅满足各项约束条件,且便于后续加工,提高了计算效率,显现出良好的设计效果。 展开更多
关键词 零齿差内啮合 变位系数 重合度 粒子群算法 优化设计 惯性权重 收缩因子
在线阅读 下载PDF
矿用自卸车座椅空气弹簧悬架参数辨识与优化
6
作者 刘红华 阳洁颖 刘翠雅 《机械设计与制造》 北大核心 2025年第5期217-222,228,共7页
矿用自卸车的座椅空气弹簧悬架系统缓震效果直接影响乘坐舒适性。这里提出一种运用自适应混沌粒子群优化算法来解决针对矿用自卸车座椅空气弹簧悬挂系统的非线性刚度和阻尼参数的识别处理。借助将混沌引入粒子的运动过程中,与标准粒子... 矿用自卸车的座椅空气弹簧悬架系统缓震效果直接影响乘坐舒适性。这里提出一种运用自适应混沌粒子群优化算法来解决针对矿用自卸车座椅空气弹簧悬挂系统的非线性刚度和阻尼参数的识别处理。借助将混沌引入粒子的运动过程中,与标准粒子群算法相比表现出不同,使粒子群在稳定状态与混沌状态之间交替向着最优点收敛,同时根据粒子运行状态动态调整惯性权重。提高了算法的适应性,明显提升收敛速度并提高了精度,有效避免了局部最优得出,进行整车试验验证了该方法的有效性。结果表明,导致乘坐舒适性下降的主要原因是由于原系统中的刚度和阻尼数值不匹配,因此将垂直方向加速度均方根值设为目标,对空气弹簧悬架的阻尼参数和非线性刚度通过遗传算法来进行优化。在优化后,目标值下降了30.4%,显著提高了乘坐舒适性。 展开更多
关键词 非线性 空气弹簧悬架 自适应混沌粒子群优化算法 辨识 优化
在线阅读 下载PDF
永磁同步电机全速域无传感器复合控制策略研究
7
作者 李贵远 张静 +3 位作者 郭中阳 刘杰 刘勇 崔安迪 《重庆理工大学学报(自然科学)》 北大核心 2025年第4期200-208,共9页
为解决单一的永磁同步电机无传感器控制策略在特定转速区间控制效果不佳的问题,提出一种新的复合策略,以实现全速域高性能控制。在矢量控制电流控制器环节,使用神经网络PID控制器,当突加负载时,0.02 s即可恢复到原转速,提高系统的鲁棒性... 为解决单一的永磁同步电机无传感器控制策略在特定转速区间控制效果不佳的问题,提出一种新的复合策略,以实现全速域高性能控制。在矢量控制电流控制器环节,使用神经网络PID控制器,当突加负载时,0.02 s即可恢复到原转速,提高系统的鲁棒性;在零、低速段,采用改进方波高频信号注入法,避免使用滤波器,无需调节滤波系数,在转速上减少0.03 s的延时,进一步提高了控制精度;在中高速段,采用超螺旋滑模观测器,通过采用积分形式消除高频噪声,减小误差以及相位延迟,但使用固定的滑模参数会使估算精度容易受到参数干扰产生误差,降低控制精度比较低,对此提出了改进的粒子群优化算法(improved particle swarm optimization,IPSO)超螺旋滑模观测器,转速误差仅有0.1 r/min;最后,通过采用改进加权切换函数,仅有0.5 s的抖动时间,高效实现2种控制策略的切换。经过仿真验证,该复合控制策略使永磁同步电机在各速度区间均具有较高的估算精度和优良的动态响应性能。 展开更多
关键词 永磁同步电机 神经网络PID 方波高频信号注入法 粒子群优化算法 超螺旋滑模观测器 加权切换函数
在线阅读 下载PDF
考虑碳排放的铁路路基施工机群配置优化
8
作者 鲍学英 申中帅 +1 位作者 李子龙 吕向茹 《安全与环境学报》 北大核心 2025年第1期364-373,共10页
铁路路基施工机群配置关系施工工期,会直接产生施工成本,对生态环境造成重要影响,进而产生较高碳排放量。首先,考虑铁路路基施工工期、施工成本、施工绿色指数及碳排放等目标,建立铁路路基施工机群配置优化模型。其中,将施工机群配置优... 铁路路基施工机群配置关系施工工期,会直接产生施工成本,对生态环境造成重要影响,进而产生较高碳排放量。首先,考虑铁路路基施工工期、施工成本、施工绿色指数及碳排放等目标,建立铁路路基施工机群配置优化模型。其中,将施工机群配置优化模型中各优化目标作为一级指标建立机群配置多目标决策偏好评价指标体系,并将组合数有序加权算子(Combination Ordered Weighted Averaging,C-OWA)法与基于指标间相关性分析的权重确定(Criteria Importance Though Intercriteria Correlation,CRITIC)法结合对指标进行组合赋权。其次,采用基于莱维飞行机制的量子粒子群优化(Quantum Particle Swarm Optimization,QPSO)算法求解该施工机群配置优化模型。最后,以某铁路路基工程某标段为例进行实证分析。结果显示,多目标优化方案较原方案工期提前75 d,成本降低203.257万元,绿色指数提升5.250%,碳排放量降低1.305 t。研究结果可为铁路路基施工机群配置优化提供新思路。 展开更多
关键词 环境工程学 铁路路基机群配置 碳排放 组合数有序加权算子法 基于指标间相关性分析的权重确定法 基于莱维飞行的量子粒子群优化算法
在线阅读 下载PDF
基于改进变异萤火虫优化粒子滤波的无人机目标定位
9
作者 闫啸家 朱惠民 +2 位作者 孙世岩 石章松 姜尚 《兵工学报》 北大核心 2025年第5期70-82,共13页
针对无人机光电平台受到严重非线性因素影响,从而导致目标定位精度显著降低的问题,提出一种基于改进变异萤火虫优化粒子滤波(Improved Mutant Firefly Algorithm-Particle Filter, IMFA-PF)算法,用于无人机对地面目标精确定位。首先,建... 针对无人机光电平台受到严重非线性因素影响,从而导致目标定位精度显著降低的问题,提出一种基于改进变异萤火虫优化粒子滤波(Improved Mutant Firefly Algorithm-Particle Filter, IMFA-PF)算法,用于无人机对地面目标精确定位。首先,建立无人机光电平台目标观测的状态方程和测量方程;利用IMFA-PF算法对目标地理位置进行估计,通过引入多重变异策略和弹力机制来改变粒子之间的相互作用模式,解决由严重非线性因素以及过度优化导致的粒子退化问题;通过一维非线性不稳定仿真系统和实测飞行实验验证了该算法的有效性。实验结果表明,所提算法能够改善粒子分布受观测非线性的影响,有效解决粒子退化的问题,与已有算法相比具有更好的鲁棒性和定位精度。 展开更多
关键词 无人机 目标定位 粒子滤波 群智能优化 非线性因素
在线阅读 下载PDF
基于麻雀算法优化的LQR农机横向跟踪控制方法
10
作者 魏世博 吴翔 +2 位作者 王瞧 牛群峰 樊广晓 《中国农机化学报》 北大核心 2025年第6期250-258,298,共10页
路径跟踪在智能农机中至关重要。针对线性二次型调节器(LQR)的系数矩阵Q和R选取困难易造成跟踪精度不佳问题,提出一种基于麻雀算法优化的LQR农机横向跟踪控制方法。首先,以拖拉机二自由度车辆动力学为基础,构建横向跟踪误差模型,并采用... 路径跟踪在智能农机中至关重要。针对线性二次型调节器(LQR)的系数矩阵Q和R选取困难易造成跟踪精度不佳问题,提出一种基于麻雀算法优化的LQR农机横向跟踪控制方法。首先,以拖拉机二自由度车辆动力学为基础,构建横向跟踪误差模型,并采用前馈补偿的方式抑制稳态误差。其次,设定横向误差阈值,一旦超过该误差阈值,将采用麻雀算法对权重系数进行优化调整,以提高路径跟踪精度。最后,运用CarSim—Simulink平台进行联合仿真,通过3种不同曲率的单弯道路径和多弯道正弦路径对农机横向跟踪控制器进行精度测试,并与传统LQR控制器、传统MPC控制器、粒子群优化LQR控制器进行试验对比。结果表明,传统LQR控制器和传统MPC控制器以及粒子群优化LQR控制器在4条路径下平均横向误差分别为0.0667 m、0.0749 m、0.0359 m,而具备麻雀优化功能的控制器平均横向误差最大为0.015 m,具有较好的跟踪效果。 展开更多
关键词 智能农机 横向跟踪 LQR 麻雀算法 自适应权重 粒子群优化
在线阅读 下载PDF
基于AWPSO-GRU算法的盾构掘进姿态预测方法:以上海市域铁路机场联络线为例
11
作者 朱美恒 陈兆庚 +2 位作者 张冬梅 高俊华 黄忠凯 《科学技术与工程》 北大核心 2025年第14期6062-6071,共10页
为解决盾构掘进过程中参数设定标准不明确、盾构司机主观经验性过强而引发盾构姿态难以控制的工程问题,提出了一种考虑地层条件-隧道结构-掘进参数综合作用的盾构掘进姿态智能预测模型。首先建立了一种自适应权重粒子群优化(adaptive we... 为解决盾构掘进过程中参数设定标准不明确、盾构司机主观经验性过强而引发盾构姿态难以控制的工程问题,提出了一种考虑地层条件-隧道结构-掘进参数综合作用的盾构掘进姿态智能预测模型。首先建立了一种自适应权重粒子群优化(adaptive weight particle swarm optimization,AWPSO)算法;然后结合门控循环单元(gated recurrent unit,GRU)神经网络构建盾构姿态预测模型,其中AWPSO算法用于确定GRU神经网络中的最优超参数组合;最后结合上海轨道交通市域线机场联络线张江站-度假区站区间现场监测数据进行了案例验证。结果表明,基于AWPSO-GRU的盾构掘进姿态预测模型具有较高的可靠性和工程实用性,可为盾构掘进过程中施工参数的设定提供参考和依据。 展开更多
关键词 盾构隧道 粒子群优化 自适应惯性权重 门控循环单元 姿态预测
在线阅读 下载PDF
改进PSO-XGBoost的连铸定重预测
12
作者 高峰 李新杰 +1 位作者 符海东 彭浩 《计算机工程与设计》 北大核心 2025年第1期290-297,共8页
为实现连铸坯有效定重预测,避免在连铸生产中产生质量缺陷和资源浪费,根据真实方坯生产数据,提出一种基于改进粒子群算法优化XGBoost的连铸定重预测模型。针对粒子群算法全局寻优精度较低等缺点进行改进,主要采用反向学习策略优化种群... 为实现连铸坯有效定重预测,避免在连铸生产中产生质量缺陷和资源浪费,根据真实方坯生产数据,提出一种基于改进粒子群算法优化XGBoost的连铸定重预测模型。针对粒子群算法全局寻优精度较低等缺点进行改进,主要采用反向学习策略优化种群初始分布提高算法优化效率,根据进化状态自适应调整惯性权重,匹配粒子当前搜索状态,同时使用突变策略使粒子突破局部收敛。数值实验结果表明,改进算法收敛速度更快,精度更高,验证了良好性能。将其应用到XGBoost中优化模型超参数,连铸坯定重预测精度获得提升。 展开更多
关键词 连铸 定重预测 XGBoost 粒子群优化 进化状态 自动机器学习 超参数优化
在线阅读 下载PDF
基于PSO-ChOA优化的轴流风机故障诊断模型
13
作者 吕亚楠 赵康 +1 位作者 马草原 郑璐 《机电工程》 北大核心 2025年第2期373-386,共14页
传统的风机故障诊断技术依赖大量的历史数据,在参数优化和算法选择上存在早熟收敛问题,且在风机故障诊断过程中需要精确采集信号,但实际应用中受限于传感器安装条件,影响了数据的准确性和诊断的有效性。针对这些问题,提出了一种融合改... 传统的风机故障诊断技术依赖大量的历史数据,在参数优化和算法选择上存在早熟收敛问题,且在风机故障诊断过程中需要精确采集信号,但实际应用中受限于传感器安装条件,影响了数据的准确性和诊断的有效性。针对这些问题,提出了一种融合改进粒子群优化算法(PSO)与黑猩猩优化算法(ChOA)混合优化策略(PSO-ChOA)的VMD-CNN-Transformer模型,应用于轴流风机故障诊断。首先,通过仿真和实验获取了七种风机典型电气故障信号和三种离心风机轴承故障信号,并进行了预处理以满足算法训练要求;然后,使用PSO对ChOA的狩猎搜索阶段进行了优化,减少了人为设定参数对模型训练的影响,通过构建23个标准测试函数,分析了PSO-ChOA算法在收敛速度和全局优化上的优势;最后,利用变分模态分解(VMD)提取了故障特征,并利用卷积神经网络-Transformer(CNN-Transformer)模型进行了分类,采用实例分析了该模型在处理非线性和高维数据时的强大能力。研究结果表明:相较于传统算法,PSO-ChOA算法在收敛速度上的优势显著,能够更快地跳出局部最优,避免早熟收敛,同时保持较高的搜索精度,最终找到更接近全局最优的解;采用PSO-ChOA优化的VMD-CNN-Transformer模型在风机故障诊断任务中达到了97.76%的准确率,较VMD-CNN-Transformer方法,准确率提升了6.64%;PSO-ChOA在参数优化领域的应用潜力,为工业设备故障诊断研究提供了新的视角。 展开更多
关键词 离心式风机 复杂非线性信号 粒子群优化 黑猩猩优化算法 卷积神经网络-Transformer模型 变分模态分解
在线阅读 下载PDF
基于改进粒子群优化算法的船舶避碰研究 被引量:1
14
作者 朱凯鹏 王全政 +3 位作者 杨文政 于庆州 王泽凡 王晓原 《传感器与微系统》 北大核心 2025年第4期40-43,47,共5页
随着海上贸易的日益增长,海洋运输已逐渐成为世界各国运输和贸易发展的重要环节,如何避免船舶碰撞已成为海上贸易中的一个重要问题。针对海上船舶避碰问题,本文提出了一种改进粒子群优化(IPSO)算法,该算法根据当前粒子目标函数的平均值... 随着海上贸易的日益增长,海洋运输已逐渐成为世界各国运输和贸易发展的重要环节,如何避免船舶碰撞已成为海上贸易中的一个重要问题。针对海上船舶避碰问题,本文提出了一种改进粒子群优化(IPSO)算法,该算法根据当前粒子目标函数的平均值动态调整惯性权值,另外考虑到船舶操纵的安全性,改进了适应度函数,并结合IPSO算法,对函数进行求解。通过MATLAB仿真结果表明,与传统的PSO算法相比,IPSO算法的收敛速度提高了37.5%,搜索效率得到显著增强。 展开更多
关键词 船舶避碰 改进粒子群优化算法 自适应惯性权值 避碰决策
在线阅读 下载PDF
基于NLWLDPSO的压力容器关键部位的结构优化 被引量:1
15
作者 张思维 唐宇峰 +1 位作者 李文杰 曹睿 《化工设备与管道》 北大核心 2025年第1期28-37,共10页
针对传统粒子群算法在进行压力容器结构优化时易出现陷入局部最优、求解速度偏慢的问题,提出了一种非线性权重与学习因子递减粒子群算法。首先,通过对惯性权重、位置更新公式及学习因子进行改进,提出了一种新的非线性递减粒子群算法;其... 针对传统粒子群算法在进行压力容器结构优化时易出现陷入局部最优、求解速度偏慢的问题,提出了一种非线性权重与学习因子递减粒子群算法。首先,通过对惯性权重、位置更新公式及学习因子进行改进,提出了一种新的非线性递减粒子群算法;其次,分别以单变量及多变量非线性变化函数为例,验证了方法的可靠性及优势;最后,基于本文方法对某压力容器关键部位进行了结构优化,并且将优化结果与线性递减粒子群算法(LDWPSO、PSO)和非线性递减粒子群算法(FDIWPSO、NLDIWPSO、NLDWPSO)的优化结果进行对比。结果表明:采用本文方法结构优化后,相比原始结构节省了5%的材料,且与几种线性及非线性递减粒子群算法相比精度更高,迭代次数及用时更少,对于压力容器结构优化的效果更佳。 展开更多
关键词 非线性递减粒子群算法 单变量 多变量 结构优化
在线阅读 下载PDF
基于人工智能的光纤网络异常行为智能化识别研究
16
作者 程凤敏 卢山群 《激光杂志》 北大核心 2025年第5期189-195,共7页
针对光纤网络异常行为识别中面临的复杂性和实时性挑战,因此,提出基于人工智能的光纤网络异常行为智能化识别方法。该方法通过对计算光纤信号均方根频谱和光纤网络异常信号阈值进行比对,有效提取异常行为特征,并将提取的特征输入长短期... 针对光纤网络异常行为识别中面临的复杂性和实时性挑战,因此,提出基于人工智能的光纤网络异常行为智能化识别方法。该方法通过对计算光纤信号均方根频谱和光纤网络异常信号阈值进行比对,有效提取异常行为特征,并将提取的特征输入长短期记忆网络中,从而构建光纤网络异常行为检测模型。为进一步提升模型性能,在粒子群优化算法中引入自适应惯性权重思想,迭代优化长短期记忆网络的时间窗大小和隐藏层单元数,将优化的参数更新至检测模型中,从而实现较为精确的光纤网络异常行为智能化识别。实验结果表明,该方法在多个数据集上的异常行为识别准确率均超过99.3%,显著提高了光纤网络异常行为识别的效率和可靠性,为光纤网络的稳定运行提供了有力保障。 展开更多
关键词 人工智能 光纤网络 异常行为识别 长短期记忆网络 粒子群优化算法 自适应惯性权重
在线阅读 下载PDF
基于改进狮群算法的混合图像盲分离
17
作者 夏清雨 丁元明 +1 位作者 张然 杨阳 《计算机应用与软件》 北大核心 2025年第5期224-230,254,共8页
针对盲源分离传统独立分量分析方法存在分离性能不高的问题,该文提出一种基于改进狮群算法的盲源分离方法,并应用于图像盲分离中。该算法在原始狮群算法的基础上,结合蝴蝶算法较强的局部搜索能力和免疫浓度选择优秀的进化机制,并通过基... 针对盲源分离传统独立分量分析方法存在分离性能不高的问题,该文提出一种基于改进狮群算法的盲源分离方法,并应用于图像盲分离中。该算法在原始狮群算法的基础上,结合蝴蝶算法较强的局部搜索能力和免疫浓度选择优秀的进化机制,并通过基于矢量距的惯性权重调整算法的搜索平衡。算法分别以信号的负熵和峭度作为目标函数,通过求解目标函数,实现对混合信号的盲分离。仿真结果表明,所提算法可以有效地分离含噪混合图像,具有比对比算法更优异的分离性能,而且在基于峭度的目标函数下分离性能更好。 展开更多
关键词 盲源分离 独立分量分析 狮群算法 蝴蝶算法 免疫浓度选择 惯性权重
在线阅读 下载PDF
改进鲸鱼算法构建反向传播神经网络粮食产量预测模型及效果分析
18
作者 赵晶晶 陈岩 《科学技术与工程》 北大核心 2025年第7期2748-2759,共12页
为了给农业及其相关部门制定粮食策略提供理论依据,提出一种基于改进鲸鱼优化算法(improved whale optimization algorithm,IWOA)的反向传播(back propagation,BP)神经网络混合算法(IWOA-BP)。该混合算法先通过引入改进收敛因子、非线... 为了给农业及其相关部门制定粮食策略提供理论依据,提出一种基于改进鲸鱼优化算法(improved whale optimization algorithm,IWOA)的反向传播(back propagation,BP)神经网络混合算法(IWOA-BP)。该混合算法先通过引入改进收敛因子、非线性惯性权重和最优邻域扰动策略改进鲸鱼优化算法,再将其最优解赋值给BP神经网络的权值和阈值,最终提高IWOA-BP的收敛速度和收敛精度。选取全国近45年粮食总产量和7种影响因素(有效灌溉面积、化肥施用量、农村用电量、农业机械总动力、粮食作物播种面积、受灾面积和农村人均消费支出)作为数据集,构建基于改进鲸鱼算法的反向传播神经网络粮食产量预测模型。多次实验表明,IWOA-BP模型在测试集上的表现均优于其他预测模型,包括长短期记忆网络(long short-term memory network,LSTM)预测模型、极限学习机(extreme learning machine,ELM)预测模型、基于鲸鱼优化算法的BP神经网络(WOA-BP)预测模型以及基于粒子群算法的BP神经网络(PSO-BP)预测模型。IWOA-BP模型和ELM模型相比,前者的均方根误差(root mean square error,RMSE)、平均绝对百分比误差(mean absolute percentage error,MAPE)分别降低了77.12%、88.18%;和LSTM模型相比,前者的RMSE、MAPE分别降低了69.11%、47.36%;和WOA-BP模型相比,前者的平均绝对误差(mean absolute error,MAE)、RMSE和MAPE分别降低了43.78%、43.22%、45.96%。和PSO-BP模型相比,前者的MAE、RMSE、MAPE分别降低了89.67%、90.61%、90.82%。因此IWOA-BP预测模型的决定系数更高、预测误差更小且收敛速度更快,可有效地预测粮食产量,对于农业部门和相关政策制定者来说具有重要的技术参考价值。 展开更多
关键词 粮食产量 反向传播神经网络 鲸鱼优化算法 非线性惯性权重 随机扰动策略
在线阅读 下载PDF
基于改进独立成分分析的雨声信号盲源分离研究
19
作者 曾豫宁 行鸿彦 《仪器仪表学报》 北大核心 2025年第5期135-145,共11页
针对传统基于负熵等目标函数的快速独立成分分析法(FASTICA)在雨声信号盲源分离中产生的幅度扩大,分离性能较差等问题,提出了一种改进的独立成分分析(ICA)方法。不再采用传统基于负熵、峰度等复杂目标函数,选择基于最大化信号的非高斯性... 针对传统基于负熵等目标函数的快速独立成分分析法(FASTICA)在雨声信号盲源分离中产生的幅度扩大,分离性能较差等问题,提出了一种改进的独立成分分析(ICA)方法。不再采用传统基于负熵、峰度等复杂目标函数,选择基于最大化信号的非高斯性,通过双曲余弦函数与对数函数的组合进行非线性变换,同时以源信号与分离信号的均值差平方重新构建目标函数,同时为了提高算法的运行、收敛速度以及寻优能力,引入粒子群算法(PSO)替代传统梯度下降法,利用其快速全局搜索能力对目标函数进行寻优,有效规避ICA在迭代过程中易陷入局部最优的问题,获取最佳解混矩阵后进行雨声混合信号的分离,提取较纯净的雨声信号。实验结果表明,改进后的ICA能够满足盲源分离需求,分离指标(PI)达到了10-2级别。为了进一步验证所提算法的有效性与稳定性,在不同雨声类型与环境噪声混合场景下分别进行了盲源分离实验,结果显示所提改进ICA算法在不同环境噪声背景下的混合信号中均能有效分离并恢复出源雨声信号。此外,将改进目标函数的ICA与基于负熵的FASTICA算法进行对比,所提算法不仅能够有效解决FASTICA算法产生的幅度扩大问题,并且收敛速度更快,均方误差(MSE)降低了两个数量级,不同雨声类型下的信号失真比(SDR)均提升了近20 dB。 展开更多
关键词 雨声信号 盲源分离 独立成分分析 粒子群算法 非线性变换
在线阅读 下载PDF
基于改进粒子群算法的MMC-STATCOM参数仿射辨识方法
20
作者 黄耀宣 程杉 +2 位作者 黄永章 徐恒山 杜鹏飞 《电力系统保护与控制》 北大核心 2025年第9期176-187,共12页
参数辨识效果会强关联于耦合误差,同时参数的耦合误差又呈现出高复杂性特征,但传统粒子群算法难以高效利用耦合误差扩充算法搜索范围。提出一种基于改进粒子群算法的模块化多电平静止同步补偿器参数仿射辨识方法。首先,建立模块化多电... 参数辨识效果会强关联于耦合误差,同时参数的耦合误差又呈现出高复杂性特征,但传统粒子群算法难以高效利用耦合误差扩充算法搜索范围。提出一种基于改进粒子群算法的模块化多电平静止同步补偿器参数仿射辨识方法。首先,建立模块化多电平静止同步补偿器(modular multilevel converter static synchronous compensator,MMC-STATCOM)的数学模型,确定待辨识参数。其次,提出一种基于仿射算法的参数辨识方法,将参数辨识问题转化为参数与耦合误差联合辨识问题。在此基础上,采用熵权法综合考虑区间满足度和区间误差对辨识效果的影响,结合改进粒子群算法实现模块化多电平静止同步补偿器的参数与耦合误差的解耦辨识。仿真结果证明,参数和耦合误差的辨识误差分别在1.06%和2.95%以内。 展开更多
关键词 静止同步补偿器 模块化多电平变换器 改进粒子群算法 仿射算法 熵权法 参数辨识
在线阅读 下载PDF
上一页 1 2 46 下一页 到第
使用帮助 返回顶部