期刊文献+
共找到407篇文章
< 1 2 21 >
每页显示 20 50 100
An Improved Particle Swarm Optimization Algorithm Based on Ensemble Technique
1
作者 施彦 黄聪明 《Defence Technology(防务技术)》 SCIE EI CAS 2006年第4期310-314,共5页
An improved particle swarm optimization (PSO) algorithm based on ensemble technique is presented. The algorithm combines some previous best positions (pbest) of the particles to get an ensemble position (Epbest), whic... An improved particle swarm optimization (PSO) algorithm based on ensemble technique is presented. The algorithm combines some previous best positions (pbest) of the particles to get an ensemble position (Epbest), which is used to replace the global best position (gbest). It is compared with the standard PSO algorithm invented by Kennedy and Eberhart and some improved PSO algorithms based on three different benchmark functions. The simulation results show that the improved PSO based on ensemble technique can get better solutions than the standard PSO and some other improved algorithms under all test cases. 展开更多
关键词 机器学习 进化计算 粒子群优化算法 系综技术
在线阅读 下载PDF
Fault diagnosis model based on multi-manifold learning and PSO-SVM for machinery 被引量:6
2
作者 Wang Hongjun Xu Xiaoli Rosen B G 《仪器仪表学报》 EI CAS CSCD 北大核心 2014年第S2期210-214,共5页
Fault diagnosis technology plays an important role in the industries due to the emergency fault of a machine could bring the heavy lost for the people and the company. A fault diagnosis model based on multi-manifold l... Fault diagnosis technology plays an important role in the industries due to the emergency fault of a machine could bring the heavy lost for the people and the company. A fault diagnosis model based on multi-manifold learning and particle swarm optimization support vector machine(PSO-SVM) is studied. This fault diagnosis model is used for a rolling bearing experimental of three kinds faults. The results are verified that this model based on multi-manifold learning and PSO-SVM is good at the fault sensitive features acquisition with effective accuracy. 展开更多
关键词 FAULT diagnosis multi-manifold learning particle swarm optimization support vector machine
在线阅读 下载PDF
基于特征筛选和粒子群优化的花生生物量估算 被引量:2
3
作者 刘涛 杨奉源 +4 位作者 刘望 张寰 殷冬梅 张全国 焦有宙 《农业工程学报》 北大核心 2025年第1期238-247,共10页
为解决花生植株生物量估算精度低、破坏性大等问题,该研究提出一种无人机低空遥感技术结合高光谱特征筛选的花生生物量估算方法。通过无人机搭载高光谱成像仪,获取田块尺度多个花生品种的高光谱影像数据,首先对获取的影像进行拼接、辐... 为解决花生植株生物量估算精度低、破坏性大等问题,该研究提出一种无人机低空遥感技术结合高光谱特征筛选的花生生物量估算方法。通过无人机搭载高光谱成像仪,获取田块尺度多个花生品种的高光谱影像数据,首先对获取的影像进行拼接、辐射定标、大气校正等预处理,提取出地面采样点位置的光谱反射率,计算光谱反射率的一阶微分和植被指数,使用变量投影重要性(variable importance in projection,VIP)方法对光谱反射率、一阶微分和植被指数等三种数据进行特征筛选,利用筛选后的特征和地面实测数据构建支持向量机回归(support vector regression,SVR)、反向传播神经网络回归(back propagation neural network,BPNN)和随机森林回归(random forest regression,RFR)模型,并使用粒子群优化算法(particle swarm optimization,PSO)进行模型优化。结果表明:相比原始光谱反射率和植被指数,一阶微分光谱反射率与花生生物量具有较好的相关性;使用一阶微分光谱反射率与植被指数组合的RF回归模型精度最高(决定系数R^(2)为0.754,均方根误差RMSE为0.085 kg/m^(2)),使用粒子群优化后的PSO-RF模型可进一步提高模型精度(R^(2)为0.80,RMSE为0.076 kg/m^(2))。该研究为花生生物量精准估算提供了有效的方法,为智慧乡村建设中的精细化农田管理提供技术支持。 展开更多
关键词 花生 生物量 智慧乡村 特征筛选 机器学习 粒子群优化
在线阅读 下载PDF
有色金属行业碳排放情景预测研究——以陕西省为例
4
作者 杨玮 张林怡 +3 位作者 龙涛 邓莎 杨超 雷永康 《安全与环境学报》 北大核心 2025年第7期2858-2866,共9页
科学识别碳排放的主要影响因素并准确预测碳排放峰值对实现“双碳”目标具有重要意义。研究以能源、资源供应大省——陕西省为例,基于1997—2021年陕西省经济社会发展和有色金属能源消费数据,运用Lasso回归模型识别影响陕西省有色金属... 科学识别碳排放的主要影响因素并准确预测碳排放峰值对实现“双碳”目标具有重要意义。研究以能源、资源供应大省——陕西省为例,基于1997—2021年陕西省经济社会发展和有色金属能源消费数据,运用Lasso回归模型识别影响陕西省有色金属行业碳排放的主要影响因素,并通过构建粒子群算法(Particle Swarm Optimization, PSO)优化的深度极限学习机(Deep Extreme Learning Machine, DELM)模型对陕西省有色金属行业2022—2035年的碳排放进行情景预测。结果显示:省经济增速、能源消费总量、能源强度等6个因素是影响陕西省有色金属行业碳排放的主要因素;PSO-DELM模型的预测精度比DELM模型更高,其决定系数、平均绝对百分比误差、平均绝对误差和均方根误差分别为0.99、0.36%、0.02和0.03。情景预测结果表明,在低碳、基准和高碳情景下,陕西省有色金属行业碳排放将分别于2028年、2032年和2034年达峰,峰值分别为280.05万t、432.05万t和616.23万t。 展开更多
关键词 环境工程学 Lasso回归 深度极限学习机 粒子群优化算法 碳排放 情景预测
在线阅读 下载PDF
交叉筛透筛率影响因素及其智能预测模型
5
作者 赵啦啦 徐峰 +4 位作者 段晨龙 郭辰昊 汪维 江海深 乔金鹏 《煤炭学报》 北大核心 2025年第7期3617-3628,共12页
湿黏细粒原煤的干法深度筛分是实现煤炭高效洁净利用的关键技术之一。交叉式细粒滚轴筛(交叉筛)是一种新型干法深度筛分设备,有效解决了传统干法筛分设备易出现“筛面堵孔”等问题。针对筛分过程的数学模型和DEM(Discrete Element Meth... 湿黏细粒原煤的干法深度筛分是实现煤炭高效洁净利用的关键技术之一。交叉式细粒滚轴筛(交叉筛)是一种新型干法深度筛分设备,有效解决了传统干法筛分设备易出现“筛面堵孔”等问题。针对筛分过程的数学模型和DEM(Discrete Element Method)模型均存在难以准确预测实际筛分性能的问题,基于机器学习方法对交叉筛的透筛率智能预测模型进行了研究。利用斯皮尔曼相关系数矩阵热力图分析了给料率、外水含量、筛面倾角和筛轴转速4个特征变量与透筛率之间及各特征之间的相关性,分别基于线性回归(Linear Regression,LR)、支持向量机(Support Vector Machine,SVM)、决策树(Decision Tree,DT)和随机森林(Random Forest,RF)算法建立了4种交叉筛透筛率智能预测模型,并结合粒子群算法(Particle Swarm Optimization,PSO)对支持向量机、决策树及随机森林3种模型进行超参数组合优化,得到模型的最佳参数组合并提高了模型的预测性能和泛化能力。利用拟合决定系数R2(Coefficient of Determination)、均方误差EMS(Mean Square Error)和平均绝对误差EMA(Mean Absolute Error)3个评价指标,比较了各模型的预测性能。其中,PSO-SVM预测模型性能最好,对数据的拟合能力最强,其评价指标R^(2)达到了0.976 1,且预测的结果与实际值的误差最小,相应的评价指标EMS和EMA分别为3.110×10^(-4)和1.353×10^(-2)。LR模型的预测性能最差,其评价指标R^(2)仅为0.722 2,且预测的结果与实际值的误差最大,EMS和EMA分别为1.320×10^(-3)和3.137×10^(-2)。此外,相比于LR模型,添加L_(1)和L_(2)正则化获得的模型预测准确率分别提高了20.26%和4.43%。研究结果为建立交叉筛的透筛率机器学习智能预测模型提供了参考,为分析交叉筛的特征变量对透筛率的影响机理提供了新方法,为实现交叉筛的智能化控制及结构优化提供了理论依据。 展开更多
关键词 交叉筛 透筛率 机器学习 预测模型 粒子群算法
在线阅读 下载PDF
基于粒子群优化后随机森林模型的管道内腐蚀风险预测
6
作者 肖雯雯 葛鹏莉 +6 位作者 胡广强 吕瑶 龙武 刘青山 郜双武 曲志豪 张雷 《腐蚀与防护》 北大核心 2025年第2期59-65,共7页
基于塔河油田历史失效数据,使用Pearson相关性分析和灰色关联度分析确定管道内腐蚀主控因素,并将其作为模型输入变量,腐蚀速率作为输出变量,建立随机森林(RF)腐蚀预测模型。为提高预测精度,使用粒子群优化(PSO)算法对RF模型的超参数进... 基于塔河油田历史失效数据,使用Pearson相关性分析和灰色关联度分析确定管道内腐蚀主控因素,并将其作为模型输入变量,腐蚀速率作为输出变量,建立随机森林(RF)腐蚀预测模型。为提高预测精度,使用粒子群优化(PSO)算法对RF模型的超参数进行优化。结果表明:塔河油田输油管道内腐蚀主控因素为CO_(2)分压、温度、Cl^(-)含量和H_(2)S分压;经PSO优化后RF模型的决定系数R~2为0.97,均方根误差为0.161,平均绝对误差为0.027,均优于其他3种模型。因此,PSO优化后RF模型能够准确预测管道的腐蚀速率,为油气田管道的腐蚀预警和防护提供依据和支持。 展开更多
关键词 CO_(2)-H_(2)S腐蚀 机器学习 随机森林(RF) 粒子群优化(PSO) 腐蚀速率
在线阅读 下载PDF
基于PSO-ELM的不同温湿度条件下叶丝干燥入口水分控制研究
7
作者 李自娟 李宜馨 +7 位作者 吕萱 赵海洋 孙朔 冯子贤 高杨 赵力源 呼守宇 陈娇娇 《中国烟草学报》 北大核心 2025年第3期60-69,共10页
【目的】控制不同温湿度条件下叶丝干燥入口水分的品质,促进叶丝干燥过程的稳定及成品烟丝质量的提高。【方法】使用K-means聚类分析划分温湿度区间,利用统计分析对不同温湿度区间下叶丝干燥入口水分进行品质区分,构建不同温湿度条件下... 【目的】控制不同温湿度条件下叶丝干燥入口水分的品质,促进叶丝干燥过程的稳定及成品烟丝质量的提高。【方法】使用K-means聚类分析划分温湿度区间,利用统计分析对不同温湿度区间下叶丝干燥入口水分进行品质区分,构建不同温湿度条件下叶丝干燥入口水分分类模型,并根据分类模型选取最佳工艺参数。【结果】(1)全年可分为4、5月为中温低湿,6、7、8月为高温高湿,9、10月为中温中湿,其它为低温中湿4个区间,且不同温湿度区间下叶丝干燥入口水分存在显著差异;(2)不同温湿度区间下叶丝干燥入口水分离散化处理后分为劣品质(其它)、中等品质(水分偏低μ-1.5σ~μ-0.5σ)、高品质(μ-0.5σ~μ+0.5σ)和中等品质(水分偏高μ+0.5σ~μ+1.5σ)4个品质类别;(3)不同温湿度区间干燥入口水分分类模型PSO-ELM效果均优于GS-SVM和GS-RF,其各温湿度区间的准确率、精确度和召回率均在90%以上,F1分数均在0.90以上;(4)PSO-ELM模型选取出最大化高品质入口水分的工艺参数运用于实际生产后,不同温湿度条件下的叶丝干燥入口水分标准差均降低了40%~50%,高品质入口水分的占比显著增高,其中中温低湿和低温中湿区的占比分别增加了38.9%和60%。 展开更多
关键词 叶丝干燥 温湿度 粒子群 极限学习机
在线阅读 下载PDF
基于IEO-MKELM模型的重整产品辛烷值软测量方法
8
作者 陈晓彦 赵超 +2 位作者 付斌 李卫东 范克威 《石油与天然气化工》 北大核心 2025年第4期131-139,共9页
目的针对催化重整产品辛烷值测量实时性较差的问题,提出基于改进平衡优化器算法的多核极限学习机(IEOMKELM)辛烷值软测量模型。方法采用混沌映射、反向学习策略、优化非线性因子、莱维飞行和贪心选择策略优化基础平衡算法,获得具有更高... 目的针对催化重整产品辛烷值测量实时性较差的问题,提出基于改进平衡优化器算法的多核极限学习机(IEOMKELM)辛烷值软测量模型。方法采用混沌映射、反向学习策略、优化非线性因子、莱维飞行和贪心选择策略优化基础平衡算法,获得具有更高全局和局部搜索能力的改进平衡算法(IEO)。随后将这一改进后的平衡优化算法应用于多核极限学习机(MKELM)多项参数的优化,进而建立了催化重整产品辛烷值软测量模型。结果利用某炼化企业的实测数据对模型精度进行验证,结果表明,由IEO-MKELM模型得到的预测值与实测值间的误差在10^(−3)数量级以下,与其他同类模型相比,IEO-MKELM模型具有更高的预测精度。结论基于IEO-MKELM的辛烷值软测量方法研究对于提高催化重整生产过程的自动化水平具有重要意义。 展开更多
关键词 IEO-MKELM 平衡优化算法 多核极限学习机 辛烷值 软测量 预测模型
在线阅读 下载PDF
基于容量增量分析与VMD-GWO-KELM的锂电池健康状态估计
9
作者 陈峥 多功东 +3 位作者 申江卫 沈世全 刘昱 魏福星 《储能科学与技术》 北大核心 2025年第6期2476-2487,共12页
为克服传统健康状态估计方法中的特征提取质量不足、非线性特性复杂及模型参数优化困难等问题,本工作提出一种基于容量增量分析与VMD-GWO-KELM的健康状态估计方法。首先,本工作通过改进的基于洛伦兹函数的电压容量模型,对电池恒流充电... 为克服传统健康状态估计方法中的特征提取质量不足、非线性特性复杂及模型参数优化困难等问题,本工作提出一种基于容量增量分析与VMD-GWO-KELM的健康状态估计方法。首先,本工作通过改进的基于洛伦兹函数的电压容量模型,对电池恒流充电过程中的电压-容量数据进行拟合,提取峰电压、峰值和峰面积等健康特征,并利用灰狼优化算法完成模型参数识别,从而有效提升了特征提取质量和鲁棒性。其次,采用变分模态分解技术对健康状态信号进行多尺度分解,将模态分量作为独立子模型的输入,捕捉不同频域的关键特性,降低了信号混叠和噪声影响。然后,结合灰狼优化算法对核极限学习机模型的关键参数进行优化,显著提高了非线性拟合能力和估计精度。最后,通过不同训练量、不同估计模型对比和多电池数据的验证,全面评估模型性能。实验结果表明,本工作提出的算法在仅使用100次循环数据的情况下,即可实现高精度健康状态估计,平均绝对误差为0.9751%,最大误差为1.9340%,同时表现出良好的鲁棒性和泛化能力。 展开更多
关键词 锂离子电池 健康状态 容量增量分析 变分模态分解 灰狼优化 核极限学习机
在线阅读 下载PDF
基于PSO-SVR算法的钢板-混凝土组合连梁承载力预测
10
作者 田建勃 闫靖帅 +2 位作者 王晓磊 赵勇 史庆轩 《振动与冲击》 北大核心 2025年第7期155-162,共8页
为准确预测钢板-混凝土组合(steel plate-RC composite,PRC)连梁承载力,本文分别通过支持向量机回归算法(support vector regression,SVR)、极端梯度提升算法(XGBoost)和粒子群优化的支持向量机回归(particle swarm optimization-suppor... 为准确预测钢板-混凝土组合(steel plate-RC composite,PRC)连梁承载力,本文分别通过支持向量机回归算法(support vector regression,SVR)、极端梯度提升算法(XGBoost)和粒子群优化的支持向量机回归(particle swarm optimization-support vector regression,PSO-SVR)算法进行了PRC连梁试验数据的回归训练,此外,通过使用Sobol敏感性分析方法分析了数据特征参数对PRC连梁承载力的影响。结果表明,基于SVR、极端梯度提升算法(extreme gradient boosting,XGBoost)和PSO-SVR的预测模型平均绝对百分比误差分别为5.48%、7.65%和4.80%,其中,基于PSO-SVR算法的承载力预测模型具有最高的预测精度,模型的鲁棒性和泛化能力更强。此外,特征参数钢板率(ρ_(p))、截面高度(h)和连梁跨高比(l_(n)/h)对PRC连梁承载力影响最大,三者全局影响指数总和超过0.75,其中,钢板率(ρ_(p))是对PRC连梁承载力影响最大的单一因素,一阶敏感性指数和全局敏感性指数分别为0.3423和0.3620,以期为PRC连梁在实际工程中的设计及应用提供参考。 展开更多
关键词 钢板-混凝土组合连梁 机器学习 粒子群优化的支持向量机回归(PSO-SVR)算法 承载力 敏感性分析
在线阅读 下载PDF
二元混合气体成分检测的改进蒲公英算法研究
11
作者 李鹏 汤炼海 +2 位作者 林事力 纵彪 于涛 《传感器与微系统》 北大核心 2025年第2期15-20,共6页
针对阵列传感器检测二元混合气体时由于交叉敏感特性导致准确率低的问题,提出一种改进型蒲公英优化(IDO)算法优化核极限学习机(KELM)的二元混合气体检测方法。首先,引入Kent映射初始化种群提高初始种群分布的均匀性,后将精英反向学习策... 针对阵列传感器检测二元混合气体时由于交叉敏感特性导致准确率低的问题,提出一种改进型蒲公英优化(IDO)算法优化核极限学习机(KELM)的二元混合气体检测方法。首先,引入Kent映射初始化种群提高初始种群分布的均匀性,后将精英反向学习策略(EOBL)引入蒲公英种子位置更新,提高原算法寻优精度。将该算法用于KELM参数寻优,建立改进DO(IDO)算法优化KELM模型,实现对二元混合气体的成分识别。实验结果表明:IDO算法优化的KELM模型对二元混合气体成分识别准确率可达99.71%,比原始KELM模型提高4.28%。 展开更多
关键词 改进蒲公英优化算法 核极限学习机 气体分类
在线阅读 下载PDF
基于改进粒子群算法和极限学习机模型的配电网物资需求预测
12
作者 王永利 赵中华 +2 位作者 张一诺 冯天义 刘怡然 《科学技术与工程》 北大核心 2025年第15期6410-6418,共9页
为解决电网物资品种繁多、规格多样、数量巨大、用途广泛、受政策和投资影响大等特点所导致的预测模型构建困难的问题。首先,通过德尔菲法和灰色关联分析法(gray correlation analysis,GRA)筛选影响基建、业扩及抢修项目物资需求数量的... 为解决电网物资品种繁多、规格多样、数量巨大、用途广泛、受政策和投资影响大等特点所导致的预测模型构建困难的问题。首先,通过德尔菲法和灰色关联分析法(gray correlation analysis,GRA)筛选影响基建、业扩及抢修项目物资需求数量的因素。其次,利用引入自适应惯性因子和学习因子的改进粒子群算法调整极限学习机的最佳参数组合,训练各类配网项目物资需求预测模型。最后,以南方电网深圳市某供电局2020—2022年基建项目10 kV电力电缆需求情况为例,将GRA-IPSO-ELM(grey relational analysis,improved particle swarm optimization,and extreme learning machines)德尔菲法和灰色关联分析法模型与常见的4种预测模型的结果进行对比。结果表明,相较于ELM模型、支持向量机模型以及PSO-ELM模型,GRA-IPSO-ELM模型预测准确率得到10.38%、5.37%、3.83%的提升,可见,所提出的模型实现了对配网物资需求数量准确且高效的预测。 展开更多
关键词 物资需求预测 配电网 极限学习机 改进粒子群优化算法
在线阅读 下载PDF
极薄煤层破碎顶板条件下液压支架带压移架残余支撑力决策方法
13
作者 张传伟 张刚强 +4 位作者 路正雄 李林岳 何正伟 龚凌霄 黄骏峰 《工矿自动化》 北大核心 2025年第3期22-31,38,共11页
在破碎顶板条件下,液压支架带压移架过程中残余支撑力的精准决策对于提高极薄煤层智能化开采效率和保障作业安全至关重要。为实现极薄煤层破碎顶板条件下液压支架带压移架残余支撑力的准确决策,提出了一种基于改进蜣螂算法(IDBO)优化深... 在破碎顶板条件下,液压支架带压移架过程中残余支撑力的精准决策对于提高极薄煤层智能化开采效率和保障作业安全至关重要。为实现极薄煤层破碎顶板条件下液压支架带压移架残余支撑力的准确决策,提出了一种基于改进蜣螂算法(IDBO)优化深度混合核极限学习机(DHKELM)的液压支架带压移架残余支撑力决策方法。在混合核极限学习机(HKELM)基础上引入极限学习机自动编码器(ELM-AE)结构来构建DHKELM模型,以增强对复杂输入的特征提取和非线性映射能力;引入ICMIC混沌映射、Lévy飞行和贪婪策略对蜣螂算法(DBO)进行改进,形成具备更高寻优精度和更快收敛速度的IDBO算法;利用IDBO算法优化DHKELM模型的超参数,建立IDBO-DHKELM模型。结合极薄煤层综采工作面液压支架带压移架实测数据,通过可视化和相关性分析,确定支架号、带压移架前支架支撑力、推移油缸进液压力和推移油缸行程变化速度作为影响残余支撑力的关键特征,并构建残余支撑力决策样本数据集,最终完成IDBO-DHKELM模型的训练与评估。实验结果表明:基于IDBO-DHKELM模型的液压支架带压移架残余支撑力决策结果的均方根误差(RMSE)、平均绝对误差(MAE)及决定系数(R^(2))分别为0.143,0.119,0.971,具有较高的决策精确度。 展开更多
关键词 极薄煤层 液压支架 带压移架 残余支撑力 改进蜣螂算法 深度混合核极限学习机
在线阅读 下载PDF
基于CEEMD的分特征组合超短期负荷预测模型
14
作者 商立群 贾丹铭 +1 位作者 安迪 王俊昆 《广西师范大学学报(自然科学版)》 北大核心 2025年第5期41-51,共11页
电力负荷预测对电力调度和系统安全至关重要。针对超短期负荷预测,本文提出一种结合补充集合经验模态分解(complementary ensemble empirical mode decomposition,CEEMD)与机器学习、智能优化算法的组合预测模型。首先通过CEEMD对原始... 电力负荷预测对电力调度和系统安全至关重要。针对超短期负荷预测,本文提出一种结合补充集合经验模态分解(complementary ensemble empirical mode decomposition,CEEMD)与机器学习、智能优化算法的组合预测模型。首先通过CEEMD对原始数据进行分解,再利用排列熵(permutation entropy,PE)阈值进行分量分流。高频信号采用双向长短期记忆网络(bidirectional long short-term memory,BiLSTM)预测,低频信号则通过混合核极限学习机(hybrid kernel extreme learning machine,HKELM)并结合雪消融优化算法(snow ablation optimizer,SAO)进行优化预测。最终,各分量预测结果叠加得到综合预测值。通过实例分析,模型的均方根误差、平均绝对误差和平均绝对百分比误差分别为61.61 kW、43.91 kW和0.38%,显著优于传统模型。实验结果表明,该模型充分发掘数据内在特征、结合各方法预测优势,在超短期负荷预测中具有较高的精度。 展开更多
关键词 短期电力负荷预测 CEEMD 排列熵 双向长短期记忆网络 极限学习机 智能优化算法
在线阅读 下载PDF
基于数字孪生的变压器热点温度预测预警技术研究 被引量:1
15
作者 李佰霖 马云帆 +3 位作者 陈昱锐 罗远林 褚凡武 付文龙 《工程设计学报》 北大核心 2025年第3期281-295,共15页
变压器热点温度对电网系统的可靠性和稳定性有直接影响。针对传统变压器管理模式复杂以及变压器热点温度预测方法存在成本高、计算效率低和计算误差高等问题,提出了一种基于数字孪生的变压器热点温度预测预警技术。首先,搭建变压器数字... 变压器热点温度对电网系统的可靠性和稳定性有直接影响。针对传统变压器管理模式复杂以及变压器热点温度预测方法存在成本高、计算效率低和计算误差高等问题,提出了一种基于数字孪生的变压器热点温度预测预警技术。首先,搭建变压器数字孪生六维模型,实现了系统数据共通、多源融合和虚实交互等功能。然后,构建可承载人工智能与机器学习算法的感知交互驱动型数字孪生系统,并采用混沌自适应粒子群优化(chaotic adaptive particle swarm optimization,CAPSO)算法对BP(back propagation,反向传播)神经网络的权重和阈值进行优化,加快了原始网络的收敛速度,同时建立了基于CAPSO-BP的变压器热点温度预测模型。最后,利用变压器现场监测数据在虚拟引擎平台上进行仿真分析,实现了变压器热点温度预测预警系统各功能的开发应用并验证了预测模型的可行性和有效性。研究结果为数字孪生变压器系统由数字化向智能化转型提供了新的思路和理论依据。 展开更多
关键词 变压器 数字孪生 人工智能 机器学习 混沌自适应粒子群优化 反向传播神经网络 温度预测
在线阅读 下载PDF
基于PSO-WELM的不平衡OAM识别模型研究
16
作者 梁瑞悦 于海洋 +3 位作者 陈纯毅 倪小龙 胡小娟 李延风 《光通信技术》 北大核心 2025年第3期67-72,共6页
针对标签分布不平衡的轨道角动量(OAM)识别问题,提出了基于粒子群优化(PSO)算法的加权极限学习机(WELM)识别模型。该模型利用PSO算法对WELM的输入权重和偏置进行联合优化,提高了WELM的稳定性和鲁棒性。对比分析了PSO-WELM模型与支持向量... 针对标签分布不平衡的轨道角动量(OAM)识别问题,提出了基于粒子群优化(PSO)算法的加权极限学习机(WELM)识别模型。该模型利用PSO算法对WELM的输入权重和偏置进行联合优化,提高了WELM的稳定性和鲁棒性。对比分析了PSO-WELM模型与支持向量机(SVM)、深度学习(DL)、反向传播人工神经网络(BP-ANN)模型的性能。实验结果表明:PSO-WELM模型在较弱湍流强度下能够完全正确识别少数类、多数类OAM光束;在中等湍流强度下,PSO-WELM模型的各项评价指标值均优于对比方法,证明了该模型在识别不平衡状态OAM光束方面具有可行性和有效性。 展开更多
关键词 不平衡数据 轨道角动量 机器学习 粒子群优化算法 极限学习机
在线阅读 下载PDF
基于改进PSO-ELM的坑湖水质预测与评价
17
作者 石秀峰 王进 +3 位作者 揣新 王绍平 罗长海 岳正波 《合肥工业大学学报(自然科学版)》 北大核心 2025年第2期145-150,共6页
采矿行业产生的尾矿水具有较高的金属离子和硫酸盐质量浓度,同时具有酸化的风险,对尾矿水水质的预测和评价有利于保障尾矿水资源循环利用和可持续发展。文章将线性原始数据通过滑动窗口处理转化为模型的输入矩阵,利用粒子群优化算法(par... 采矿行业产生的尾矿水具有较高的金属离子和硫酸盐质量浓度,同时具有酸化的风险,对尾矿水水质的预测和评价有利于保障尾矿水资源循环利用和可持续发展。文章将线性原始数据通过滑动窗口处理转化为模型的输入矩阵,利用粒子群优化算法(particle swarm optimization,PSO)对极限学习机(extreme learning machine,ELM)进行改进,提出一种基于PSO-ELM的水质预测模型,以安徽马鞍山某矿区坑湖为对象,使用不同网络模型对水质参数进行预测。结果表明,改进后的PSO-ELM模型较BP(back propagation)神经网络、传统ELM具有更高的预测精度,决定系数达到82%,均方误差仅为0.04,并且具有更快的计算和收敛速度。将训练集数据与预测数据相结合,采用Spearman秩相关系数法评价水质稳定性,结果表明pH值和主要无机盐离子质量浓度较为稳定,无明显变化趋势,满足生态和生产需求。 展开更多
关键词 水质监测 滑动窗口 粒子群优化算法(PSO) 极限学习机(ELM) 水质评价
在线阅读 下载PDF
改进PSO-XGBoost的连铸定重预测
18
作者 高峰 李新杰 +1 位作者 符海东 彭浩 《计算机工程与设计》 北大核心 2025年第1期290-297,共8页
为实现连铸坯有效定重预测,避免在连铸生产中产生质量缺陷和资源浪费,根据真实方坯生产数据,提出一种基于改进粒子群算法优化XGBoost的连铸定重预测模型。针对粒子群算法全局寻优精度较低等缺点进行改进,主要采用反向学习策略优化种群... 为实现连铸坯有效定重预测,避免在连铸生产中产生质量缺陷和资源浪费,根据真实方坯生产数据,提出一种基于改进粒子群算法优化XGBoost的连铸定重预测模型。针对粒子群算法全局寻优精度较低等缺点进行改进,主要采用反向学习策略优化种群初始分布提高算法优化效率,根据进化状态自适应调整惯性权重,匹配粒子当前搜索状态,同时使用突变策略使粒子突破局部收敛。数值实验结果表明,改进算法收敛速度更快,精度更高,验证了良好性能。将其应用到XGBoost中优化模型超参数,连铸坯定重预测精度获得提升。 展开更多
关键词 连铸 定重预测 XGBoost 粒子群优化 进化状态 自动机器学习 超参数优化
在线阅读 下载PDF
基于IDBO-HKELM-Adaboost的煤与瓦斯突出危险性预测方法
19
作者 李曼 徐耀松 +1 位作者 王雨虹 王丹丹 《传感技术学报》 北大核心 2025年第3期477-486,共10页
为实现更加高效准确地完成煤与瓦斯突出危险性预测,提出了一种采用Adaboost算法增强的改进蜣螂算法(IDBO)优化混合核极限学习机(HKELM)的预测模型。首先,在数据降维时采用核主成分分析(KPCA)对影响因素进行处理并提取有效的特征量,得到... 为实现更加高效准确地完成煤与瓦斯突出危险性预测,提出了一种采用Adaboost算法增强的改进蜣螂算法(IDBO)优化混合核极限学习机(HKELM)的预测模型。首先,在数据降维时采用核主成分分析(KPCA)对影响因素进行处理并提取有效的特征量,得到预处理样本数据。将PWLCM混沌映射、非线性递减策略以及邻域学习机制融入到蜣螂算法中,之后,利用IDBO对HKELM的关键参数进行寻优,构建IDBO-HKELM煤与瓦斯突出危险性分类预测模型。最后,使用Adaboost算法对IDBO-HKELM模型进行增强。结合工程实际数据进行验证,验证结果表明:相较于其他模型,基于IDBO-HKELM-Adaboost的预测方法具有更高的预测精度,在提高运算效率的同时满足煤与瓦斯突出预测的精度和可靠性要求,准确率达到97.44%。 展开更多
关键词 煤与瓦斯突出 突出预测 改进蜣螂算法 混合核极限学习机 核主成分分析 预测模型
在线阅读 下载PDF
基于SPSO优化Multiple Kernel-TWSVM的滚动轴承故障诊断 被引量:7
20
作者 徐冠基 曾柯 柏林 《振动.测试与诊断》 EI CSCD 北大核心 2019年第5期973-979,1130,共8页
双子支持向量机(twin support vector machine,简称TWSVM)的核函数选择对其分类性能有着重要影响,TWSVM其核函数一般是局部核函数或者全局核函数,这两种核函数的泛化能力和分类性能不能兼顾。笔者利用综合加权的高斯局部核函数和多项式... 双子支持向量机(twin support vector machine,简称TWSVM)的核函数选择对其分类性能有着重要影响,TWSVM其核函数一般是局部核函数或者全局核函数,这两种核函数的泛化能力和分类性能不能兼顾。笔者利用综合加权的高斯局部核函数和多项式全局核函数方法组成双核函数来改进TWSVM以提高其泛化能力和分类性能,并采用简化粒子群优化(simple particle swarm optimization,简称SPSO)方法来对权值和参数进行优化,提出了SPSO优化Multiple Kernel-TWSVM模型,将该模型应用到滚动轴承故障诊断模式识别中。实验结果表明,双核TWSVM比单核TWSVM和反向传播(back propagation,简称BP)神经网络具有更高的分类准确率。 展开更多
关键词 滚动轴承 故障诊断 相空间重构 简化粒子群优化 双核双子支持向量机
在线阅读 下载PDF
上一页 1 2 21 下一页 到第
使用帮助 返回顶部