This paper improves the resampling step of particle filtering(PF) based on a broad interactive genetic algorithm to resolve particle degeneration and particle shortage.For target tracking in image processing,this pa...This paper improves the resampling step of particle filtering(PF) based on a broad interactive genetic algorithm to resolve particle degeneration and particle shortage.For target tracking in image processing,this paper uses the information coming from the particles of the previous fame image and new observation data to self-adaptively determine the selecting range of particles in current fame image.The improved selecting operator with jam gene is used to ensure the diversity of particles in mathematics,and the absolute arithmetical crossing operator whose feasible solution space being close about crossing operation,and non-uniform mutation operator is used to capture all kinds of mutation in this paper.The result of simulating experiment shows that the algorithm of this paper has better iterative estimating capability than extended Kalman filtering(EKF),PF,regularized partide filtering(RPF),and genetic algorithm(GA)-PF.展开更多
The existing indoor fusion positioning methods based on Pedestrian Dead Reckoning(PDR)and geomagnetic technology have the problems of large initial position error,low sensor accuracy,and geomagnetic mismatch.In this s...The existing indoor fusion positioning methods based on Pedestrian Dead Reckoning(PDR)and geomagnetic technology have the problems of large initial position error,low sensor accuracy,and geomagnetic mismatch.In this study,a novel indoor fusion positioning approach based on the improved particle filter algorithm by geomagnetic iterative matching is proposed,where Wi-Fi,PDR,and geomagnetic signals are integrated to improve indoor positioning performances.One important contribution is that geomagnetic iterative matching is firstly proposed based on the particle filter algorithm.During the positioning process,an iterative window and a constraint window are introduced to limit the particle generation range and the geomagnetic matching range respectively.The position is corrected several times based on geomagnetic iterative matching in the location correction stage when the pedestrian movement is detected,which made up for the shortage of only one time of geomagnetic correction in the existing particle filter algorithm.In addition,this study also proposes a real-time step detection algorithm based on multi-threshold constraints to judge whether pedestrians are moving,which satisfies the real-time requirement of our fusion positioning approach.Through experimental verification,the average positioning accuracy of the proposed approach reaches 1.59 m,which improves 33.2%compared with the existing particle filter fusion positioning algorithms.展开更多
To track the nonlinear,non-Gaussian bearings-only maneuvering target accurately online,the constrained auxiliary particle filtering(CAPF)algorithm is presented.To restrict the samples into the feasible area,the soft m...To track the nonlinear,non-Gaussian bearings-only maneuvering target accurately online,the constrained auxiliary particle filtering(CAPF)algorithm is presented.To restrict the samples into the feasible area,the soft measurement constraints are implemented into the update routine via the1 regularization.Meanwhile,to enhance the sampling diversity and efficiency,the target kinetic features and the latest observations are involved into the evolution.To take advantage of the past and the current measurement information simultaneously,the sub-optimal importance distribution is constructed as a Gaussian mixture consisting of the original and modified priors with the fuzzy weighted factors.As a result,the corresponding weights are more evenly distributed,and the posterior distribution of interest is approximated well with a heavier tailor.Simulation results demonstrate the validity and superiority of the CAPF algorithm in terms of efficiency and robustness.展开更多
To solve the problem of information fusion in the strapdown inertial navigation system(SINS)/celestial navigation system(CNS)/global positioning system(GPS) integrated navigation system described by the nonlinear/non-...To solve the problem of information fusion in the strapdown inertial navigation system(SINS)/celestial navigation system(CNS)/global positioning system(GPS) integrated navigation system described by the nonlinear/non-Gaussian error models,a new algorithm called the federated unscented particle filtering(FUPF) algorithm was introduced.In this algorithm,the unscented particle filter(UPF) served as the local filter,the federated filter was used to fuse outputs of all local filters,and the global filter result was obtained.Because the algorithm was not confined to the assumption of Gaussian noise,it was of great significance to integrated navigation systems described by the non-Gaussian noise.The proposed algorithm was tested in a vehicle's maneuvering trajectory,which included six flight phases:climbing,level flight,left turning,level flight,right turning and level flight.Simulation results are presented to demonstrate the improved performance of the FUPF over conventional federated unscented Kalman filter(FUKF).For instance,the mean of position-error decreases from(0.640×10-6 rad,0.667×10-6 rad,4.25 m) of FUKF to(0.403×10-6 rad,0.251×10-6 rad,1.36 m) of FUPF.In comparison of the FUKF,the FUPF performs more accurate in the SINS/CNS/GPS system described by the nonlinear/non-Gaussian error models.展开更多
According to the effective sampling of particles and the particles impoverishment caused by re-sampling in particle filter,an improved particle filtering algorithm based on observation inversion optimal sampling was p...According to the effective sampling of particles and the particles impoverishment caused by re-sampling in particle filter,an improved particle filtering algorithm based on observation inversion optimal sampling was proposed. Firstly,virtual observations were generated from the latest observation,and two sampling strategies were presented. Then,the previous time particles were sampled by utilizing the function inversion relationship between observation and system state. Finally,the current time particles were generated on the basis of the previous time particles and the system one-step state transition model. By the above method,sampling particles can make full use of the latest observation information and the priori modeling information,so that they further approximate the true state. The theoretical analysis and experimental results show that the new algorithm filtering accuracy and real-time outperform obviously the standard particle filter,the extended Kalman particle filter and the unscented particle filter.展开更多
A novel statistical method based on particle filtering is presented for multiple vehicle acoustic signals separation problem in wireless sensor network. The particle filtering method is able to deal with non-Gaussian ...A novel statistical method based on particle filtering is presented for multiple vehicle acoustic signals separation problem in wireless sensor network. The particle filtering method is able to deal with non-Gaussian and nonlinear models and non-stationary sources. Using some instantaneously mixed observations of several real-world vehicle acoustic signals, the proposed statistical method is compared with a conventional non-stationary Blind Source Separation algorithm and attractive simulation results are achieved. Moreover, considering the natural convenience to transmit particles between sensor nodes, the algorithm based on particle filtering is believed to have potential to enable the task of multiple vehicles recognition collaboratively performed by sensor nodes in distributed wireless sensor network.展开更多
This paper proposes a new multi-baseline extended particle filtering phase unwrapping algorithm which combines an extended particle filter with an amended matrix pencil model and a quantized path-following strategy. T...This paper proposes a new multi-baseline extended particle filtering phase unwrapping algorithm which combines an extended particle filter with an amended matrix pencil model and a quantized path-following strategy. The contributions to multibaseline synthetic aperture radar(SAR) interferometry are as follows: a new recursive multi-baseline phase unwrapping model based on an extended particle filter is built, and the amended matrix pencil model is used to acquire phase gradient information with a higher precision and lower computational cost, and the quantized path-following strategy is introduced to guide the proposed phase unwrapping procedure to efficiently unwrap wrapped phase image along the paths routed by a phase derivative variance map.展开更多
Two variants of systematic resampling (S-RS) are proposed to increase the diversity of particles and thereby improve the performance of particle filtering when it is utilized for detection in Bell Laboratories Layer...Two variants of systematic resampling (S-RS) are proposed to increase the diversity of particles and thereby improve the performance of particle filtering when it is utilized for detection in Bell Laboratories Layered Space-Time (BLAST) systems. In the first variant, Markov chain Monte Carlo transition is integrated in the S-RS procedure to increase the diversity of particles with large importance weights. In the second one, all particles are first partitioned into two sets according to their importance weights, and then a double S-RS is introduced to increase the diversity of particles with small importance weights. Simulation results show that both variants can improve the bit error performance efficiently compared with the standard S-P^S with little increased complexity.展开更多
We propose a target tracking method based on particle filtering(PF) to solve the nonlinear non-Gaussian target-tracking problem in the bistatic radar systems using external radiation sources. Traditional nonlinear sta...We propose a target tracking method based on particle filtering(PF) to solve the nonlinear non-Gaussian target-tracking problem in the bistatic radar systems using external radiation sources. Traditional nonlinear state estimation method is extended Kalman filtering (EKF), which is to do the first level Taylor series extension. It will cause an inaccuracy or even a scatter estimation result on condition that there is either a highly nonlinear target or a large noise square-error. Besides, Kalman filtering is the optimal resolution under a Gaussian noise assumption, and is not suitable to the non-Gaussian condition. PF is a sort of statistic filtering based on Monte Carlo simulation that is using some random samples (particles) to simulate the posterior probability density of system random variables. This method can be used in any nonlinear random system. It can be concluded through simulation that PF can achieve higher accuracy than the traditional EKF.展开更多
A modified unscented particle filtering scheme for nonlinear tracking is proposed, in view of the potential drawbacks (such as, particle impoverishment and numerical sensitivity in calculating the prior) of the conv...A modified unscented particle filtering scheme for nonlinear tracking is proposed, in view of the potential drawbacks (such as, particle impoverishment and numerical sensitivity in calculating the prior) of the conventional unscented particle filter (UPF) confronted in practice. Specifically, a different derivation of the importance weight is presented in detail. The proposed method can avoid the calculation of the prior and reduce the effects of the impoverishment problem caused by sampling from the proposal distribution, Simulations have been performed using two illustrative examples and results have been provided to demonstrate the validity of the modified UPF as well as its improved performance over the conventional one.展开更多
For being able to deal with the nonlinear or non-Gaussian problems, particle filters have been studied by many researchers. Based on particle filter, the extended Kalman filter (EKF) proposal function is applied to ...For being able to deal with the nonlinear or non-Gaussian problems, particle filters have been studied by many researchers. Based on particle filter, the extended Kalman filter (EKF) proposal function is applied to Bayesian target tracking. Markov chain Monte Carlo (MCMC) method, the resampling step, ere novel techniques are also introduced into Bayesian target tracking. And the simulation results confirm the improved particle filter with these techniques outperforms the basic one.展开更多
This paper proposes a particle swarm optimization(PSO) based particle filter(PF) tracking framework,the embedded PSO makes particles move toward the high likelihood area to find the optimal position in the state t...This paper proposes a particle swarm optimization(PSO) based particle filter(PF) tracking framework,the embedded PSO makes particles move toward the high likelihood area to find the optimal position in the state transition stage,and simultaneously incorporates the newest observations into the proposal distribution in the update stage.In the proposed approach,likelihood measure functions involving multiple features are presented to enhance the performance of model fitting.Furthermore,the multi-feature weights are self-adaptively adjusted by a PSO algorithm throughout the tracking process.There are three main contributions.Firstly,the PSO algorithm is fused into the PF framework,which can efficiently alleviate the particles degeneracy phenomenon.Secondly,an effective convergence criterion for the PSO algorithm is explored,which can avoid particles getting stuck in local minima and maintain a greater particle diversity.Finally,a multi-feature weight self-adjusting strategy is proposed,which can significantly improve the tracking robustness and accuracy.Experiments performed on several challenging public video sequences demonstrate that the proposed tracking approach achieves a considerable performance.展开更多
Particle filters have been widely used in nonlinear/non- Gaussian Bayesian state estimation problems. However, efficient distribution of the limited number of particles (n state space remains a critical issue in desi...Particle filters have been widely used in nonlinear/non- Gaussian Bayesian state estimation problems. However, efficient distribution of the limited number of particles (n state space remains a critical issue in designing a particle filter. A simplified unscented particle filter (SUPF) is presented, where particles are drawn partly from the transition prior density (TPD) and partly from the Gaussian approximate posterior density (GAPD) obtained by a unscented Kalman filter. The ratio of the number of particles drawn from TPD to the number of particles drawn from GAPD is adaptively determined by the maximum likelihood ratio (MLR). The MLR is defined to measure how well the particles, drawn from the TPD, match the likelihood model. It is shown that the particle set generated by this sampling strategy is more close to the significant region in state space and tends to yield more accurate results. Simulation results demonstrate that the versatility and es- timation accuracy of SUPF exceed that of standard particle filter, extended Kalman particle filter and unscented particle filter.展开更多
In radar target tracking application, the observation noise is usually non-Gaussian, which is also referred as glint noise. The performances of conventional trackers degra de severely in the presence of glint noise. A...In radar target tracking application, the observation noise is usually non-Gaussian, which is also referred as glint noise. The performances of conventional trackers degra de severely in the presence of glint noise. An improved particle filter, Markov chain Monte Carlo particle filter (MCMC-PF), is applied to cope with radar target tracking when the measurements are perturbed by glint noise. Tracking performance of the filter is demonstrated in the present of glint noise by computer simulation.展开更多
The particle filter(PF) algorithm is one of the most commonly used algorithms for maneuvering target tracking. The traditional PF maps from multi-dimensional information to onedimensional information during particle...The particle filter(PF) algorithm is one of the most commonly used algorithms for maneuvering target tracking. The traditional PF maps from multi-dimensional information to onedimensional information during particle weight calculation, and the incorrect transmission of information leads to the fact that the particle prediction information does not match the weight information, and its essence is the reduction of the information entropy of the useful information. To solve this problem, a dual channel independent filtering method is proposed based on the idea of equalization mapping. Firstly, the particle prediction performance is described by particle manipulations of different dimensions, and the accuracy of particle prediction is improved. The improvement of particle degradation of this algorithm is analyzed in the aspects of particle weight and effective particle number. Secondly, according to the problem of lack of particle samples, the new particles are generated based on the filtering results, and the particle diversity is increased. Finally, the introduction of the graphics processing unit(GPU) parallel computing the platform, the “channel-level” and “particlelevel” parallel computing the program are designed to accelerate the algorithm. The simulation results show that the algorithm has the advantages of better filtering precision, higher particle efficiency and faster calculation speed compared with the traditional algorithm of the CPU platform.展开更多
This paper is concerned with the recursive filtering problem for a class of discrete-time nonlinear stochastic systems in the presence of multi-sensor measurement delay. The delay occurs in a multi-step and asynchrono...This paper is concerned with the recursive filtering problem for a class of discrete-time nonlinear stochastic systems in the presence of multi-sensor measurement delay. The delay occurs in a multi-step and asynchronous manner, and the delay probability of each sensor is assumed to be known or unknown. Firstly, a new model is constructed to describe the measurement process, based on which a new particle filter is developed with the ability to fuse multi-sensor information in the case of known delay probability.In addition, an online delay probability estimation module is introduced in the particle filtering framework, which leads to another new filter that can be implemented without the prior knowledge of delay probability. More importantly, since there is no complex iterative operation, the resulting filter can be implemented recursively and is suitable for many real-time applications. Simulation results show the effectiveness of the proposed filters.展开更多
The current measurement was exploited in a more efficient way. Firstly, the system equation was updated by introducing a correction term, which depends on the current measurement and can be obtained by running a subop...The current measurement was exploited in a more efficient way. Firstly, the system equation was updated by introducing a correction term, which depends on the current measurement and can be obtained by running a suboptimal filter. Then, a new importance density function(IDF) was defined by the updated system equation. Particles drawn from the new IDF are more likely to be in the significant region of state space and the estimation accuracy can be improved. By using different suboptimal filter, different particle filters(PFs) can be developed in this framework. Extensions of this idea were also proposed by iteratively updating the system equation using particle filter itself, resulting in the iterated particle filter. Simulation results demonstrate the effectiveness of the proposed IDF.展开更多
基金supported by the National Natural Science Foundation of China(61302145)
文摘This paper improves the resampling step of particle filtering(PF) based on a broad interactive genetic algorithm to resolve particle degeneration and particle shortage.For target tracking in image processing,this paper uses the information coming from the particles of the previous fame image and new observation data to self-adaptively determine the selecting range of particles in current fame image.The improved selecting operator with jam gene is used to ensure the diversity of particles in mathematics,and the absolute arithmetical crossing operator whose feasible solution space being close about crossing operation,and non-uniform mutation operator is used to capture all kinds of mutation in this paper.The result of simulating experiment shows that the algorithm of this paper has better iterative estimating capability than extended Kalman filtering(EKF),PF,regularized partide filtering(RPF),and genetic algorithm(GA)-PF.
基金the National Natural Science Foundation of China(Grant No.42271436)the Shandong Provincial Natural Science Foundation,China(Grant Nos.ZR2021MD030,ZR2021QD148).
文摘The existing indoor fusion positioning methods based on Pedestrian Dead Reckoning(PDR)and geomagnetic technology have the problems of large initial position error,low sensor accuracy,and geomagnetic mismatch.In this study,a novel indoor fusion positioning approach based on the improved particle filter algorithm by geomagnetic iterative matching is proposed,where Wi-Fi,PDR,and geomagnetic signals are integrated to improve indoor positioning performances.One important contribution is that geomagnetic iterative matching is firstly proposed based on the particle filter algorithm.During the positioning process,an iterative window and a constraint window are introduced to limit the particle generation range and the geomagnetic matching range respectively.The position is corrected several times based on geomagnetic iterative matching in the location correction stage when the pedestrian movement is detected,which made up for the shortage of only one time of geomagnetic correction in the existing particle filter algorithm.In addition,this study also proposes a real-time step detection algorithm based on multi-threshold constraints to judge whether pedestrians are moving,which satisfies the real-time requirement of our fusion positioning approach.Through experimental verification,the average positioning accuracy of the proposed approach reaches 1.59 m,which improves 33.2%compared with the existing particle filter fusion positioning algorithms.
基金supported by the National Natural Science Foundation of China(61773267)the Shenzhen Fundamental Research Project(JCYJ2017030214551952420170818102503604)
文摘To track the nonlinear,non-Gaussian bearings-only maneuvering target accurately online,the constrained auxiliary particle filtering(CAPF)algorithm is presented.To restrict the samples into the feasible area,the soft measurement constraints are implemented into the update routine via the1 regularization.Meanwhile,to enhance the sampling diversity and efficiency,the target kinetic features and the latest observations are involved into the evolution.To take advantage of the past and the current measurement information simultaneously,the sub-optimal importance distribution is constructed as a Gaussian mixture consisting of the original and modified priors with the fuzzy weighted factors.As a result,the corresponding weights are more evenly distributed,and the posterior distribution of interest is approximated well with a heavier tailor.Simulation results demonstrate the validity and superiority of the CAPF algorithm in terms of efficiency and robustness.
基金Project(60535010) supported by the National Nature Science Foundation of China
文摘To solve the problem of information fusion in the strapdown inertial navigation system(SINS)/celestial navigation system(CNS)/global positioning system(GPS) integrated navigation system described by the nonlinear/non-Gaussian error models,a new algorithm called the federated unscented particle filtering(FUPF) algorithm was introduced.In this algorithm,the unscented particle filter(UPF) served as the local filter,the federated filter was used to fuse outputs of all local filters,and the global filter result was obtained.Because the algorithm was not confined to the assumption of Gaussian noise,it was of great significance to integrated navigation systems described by the non-Gaussian noise.The proposed algorithm was tested in a vehicle's maneuvering trajectory,which included six flight phases:climbing,level flight,left turning,level flight,right turning and level flight.Simulation results are presented to demonstrate the improved performance of the FUPF over conventional federated unscented Kalman filter(FUKF).For instance,the mean of position-error decreases from(0.640×10-6 rad,0.667×10-6 rad,4.25 m) of FUKF to(0.403×10-6 rad,0.251×10-6 rad,1.36 m) of FUPF.In comparison of the FUKF,the FUPF performs more accurate in the SINS/CNS/GPS system described by the nonlinear/non-Gaussian error models.
基金Project(60634030) supported by the Key Project of the National Natural Science Foundation of ChinaProject(60702066) supported by the National Natural Science Foundation of China+1 种基金Project (2007ZC53037) supported by Aviation Science Foundation of ChinaProject(CASC0214) supported by the Space-Flight Innovation Foundation of China
文摘According to the effective sampling of particles and the particles impoverishment caused by re-sampling in particle filter,an improved particle filtering algorithm based on observation inversion optimal sampling was proposed. Firstly,virtual observations were generated from the latest observation,and two sampling strategies were presented. Then,the previous time particles were sampled by utilizing the function inversion relationship between observation and system state. Finally,the current time particles were generated on the basis of the previous time particles and the system one-step state transition model. By the above method,sampling particles can make full use of the latest observation information and the priori modeling information,so that they further approximate the true state. The theoretical analysis and experimental results show that the new algorithm filtering accuracy and real-time outperform obviously the standard particle filter,the extended Kalman particle filter and the unscented particle filter.
基金the National "863" High Technology Development Program (2006AA01Z216)the MajorResearch Program of the Science and Technology Commission of Shanghai Municipality of China (054SGA1001).
文摘A novel statistical method based on particle filtering is presented for multiple vehicle acoustic signals separation problem in wireless sensor network. The particle filtering method is able to deal with non-Gaussian and nonlinear models and non-stationary sources. Using some instantaneously mixed observations of several real-world vehicle acoustic signals, the proposed statistical method is compared with a conventional non-stationary Blind Source Separation algorithm and attractive simulation results are achieved. Moreover, considering the natural convenience to transmit particles between sensor nodes, the algorithm based on particle filtering is believed to have potential to enable the task of multiple vehicles recognition collaboratively performed by sensor nodes in distributed wireless sensor network.
基金supported by the National Natural Science Foundation of China(4166109261461011)the Natural Science Foundation of Guangxi Province(2014GXNSFBA118273)
文摘This paper proposes a new multi-baseline extended particle filtering phase unwrapping algorithm which combines an extended particle filter with an amended matrix pencil model and a quantized path-following strategy. The contributions to multibaseline synthetic aperture radar(SAR) interferometry are as follows: a new recursive multi-baseline phase unwrapping model based on an extended particle filter is built, and the amended matrix pencil model is used to acquire phase gradient information with a higher precision and lower computational cost, and the quantized path-following strategy is introduced to guide the proposed phase unwrapping procedure to efficiently unwrap wrapped phase image along the paths routed by a phase derivative variance map.
基金supported by the National Natural Science Foundation of China(6047209860502046U0635003).
文摘Two variants of systematic resampling (S-RS) are proposed to increase the diversity of particles and thereby improve the performance of particle filtering when it is utilized for detection in Bell Laboratories Layered Space-Time (BLAST) systems. In the first variant, Markov chain Monte Carlo transition is integrated in the S-RS procedure to increase the diversity of particles with large importance weights. In the second one, all particles are first partitioned into two sets according to their importance weights, and then a double S-RS is introduced to increase the diversity of particles with small importance weights. Simulation results show that both variants can improve the bit error performance efficiently compared with the standard S-P^S with little increased complexity.
文摘We propose a target tracking method based on particle filtering(PF) to solve the nonlinear non-Gaussian target-tracking problem in the bistatic radar systems using external radiation sources. Traditional nonlinear state estimation method is extended Kalman filtering (EKF), which is to do the first level Taylor series extension. It will cause an inaccuracy or even a scatter estimation result on condition that there is either a highly nonlinear target or a large noise square-error. Besides, Kalman filtering is the optimal resolution under a Gaussian noise assumption, and is not suitable to the non-Gaussian condition. PF is a sort of statistic filtering based on Monte Carlo simulation that is using some random samples (particles) to simulate the posterior probability density of system random variables. This method can be used in any nonlinear random system. It can be concluded through simulation that PF can achieve higher accuracy than the traditional EKF.
文摘A modified unscented particle filtering scheme for nonlinear tracking is proposed, in view of the potential drawbacks (such as, particle impoverishment and numerical sensitivity in calculating the prior) of the conventional unscented particle filter (UPF) confronted in practice. Specifically, a different derivation of the importance weight is presented in detail. The proposed method can avoid the calculation of the prior and reduce the effects of the impoverishment problem caused by sampling from the proposal distribution, Simulations have been performed using two illustrative examples and results have been provided to demonstrate the validity of the modified UPF as well as its improved performance over the conventional one.
基金This project was supported by the National Natural Science Foundation of China (50405017) .
文摘For being able to deal with the nonlinear or non-Gaussian problems, particle filters have been studied by many researchers. Based on particle filter, the extended Kalman filter (EKF) proposal function is applied to Bayesian target tracking. Markov chain Monte Carlo (MCMC) method, the resampling step, ere novel techniques are also introduced into Bayesian target tracking. And the simulation results confirm the improved particle filter with these techniques outperforms the basic one.
基金supported by the Chinese Ministry of Science and Intergovernmental Cooperation Project (2009DFA12870)the National Science Foundation of China (60974062,60972119)
文摘This paper proposes a particle swarm optimization(PSO) based particle filter(PF) tracking framework,the embedded PSO makes particles move toward the high likelihood area to find the optimal position in the state transition stage,and simultaneously incorporates the newest observations into the proposal distribution in the update stage.In the proposed approach,likelihood measure functions involving multiple features are presented to enhance the performance of model fitting.Furthermore,the multi-feature weights are self-adaptively adjusted by a PSO algorithm throughout the tracking process.There are three main contributions.Firstly,the PSO algorithm is fused into the PF framework,which can efficiently alleviate the particles degeneracy phenomenon.Secondly,an effective convergence criterion for the PSO algorithm is explored,which can avoid particles getting stuck in local minima and maintain a greater particle diversity.Finally,a multi-feature weight self-adjusting strategy is proposed,which can significantly improve the tracking robustness and accuracy.Experiments performed on several challenging public video sequences demonstrate that the proposed tracking approach achieves a considerable performance.
基金supported by the National Natural Science Foundation of China(61271296)
文摘Particle filters have been widely used in nonlinear/non- Gaussian Bayesian state estimation problems. However, efficient distribution of the limited number of particles (n state space remains a critical issue in designing a particle filter. A simplified unscented particle filter (SUPF) is presented, where particles are drawn partly from the transition prior density (TPD) and partly from the Gaussian approximate posterior density (GAPD) obtained by a unscented Kalman filter. The ratio of the number of particles drawn from TPD to the number of particles drawn from GAPD is adaptively determined by the maximum likelihood ratio (MLR). The MLR is defined to measure how well the particles, drawn from the TPD, match the likelihood model. It is shown that the particle set generated by this sampling strategy is more close to the significant region in state space and tends to yield more accurate results. Simulation results demonstrate that the versatility and es- timation accuracy of SUPF exceed that of standard particle filter, extended Kalman particle filter and unscented particle filter.
文摘In radar target tracking application, the observation noise is usually non-Gaussian, which is also referred as glint noise. The performances of conventional trackers degra de severely in the presence of glint noise. An improved particle filter, Markov chain Monte Carlo particle filter (MCMC-PF), is applied to cope with radar target tracking when the measurements are perturbed by glint noise. Tracking performance of the filter is demonstrated in the present of glint noise by computer simulation.
基金supported by the National High-tech R&D Program of China(2015AA70560452015AA8017032P)the National Natural Science Foundation of China(61401504)
文摘The particle filter(PF) algorithm is one of the most commonly used algorithms for maneuvering target tracking. The traditional PF maps from multi-dimensional information to onedimensional information during particle weight calculation, and the incorrect transmission of information leads to the fact that the particle prediction information does not match the weight information, and its essence is the reduction of the information entropy of the useful information. To solve this problem, a dual channel independent filtering method is proposed based on the idea of equalization mapping. Firstly, the particle prediction performance is described by particle manipulations of different dimensions, and the accuracy of particle prediction is improved. The improvement of particle degradation of this algorithm is analyzed in the aspects of particle weight and effective particle number. Secondly, according to the problem of lack of particle samples, the new particles are generated based on the filtering results, and the particle diversity is increased. Finally, the introduction of the graphics processing unit(GPU) parallel computing the platform, the “channel-level” and “particlelevel” parallel computing the program are designed to accelerate the algorithm. The simulation results show that the algorithm has the advantages of better filtering precision, higher particle efficiency and faster calculation speed compared with the traditional algorithm of the CPU platform.
基金supported by the National Natural Science Foundation of China(6147322711472222)+3 种基金the Fundamental Research Funds for the Central Universities(3102015ZY001)the Aerospace Technology Support Fund of China(2014-HT-XGD)the Natural Science Foundation of Shaanxi Province(2015JM6304)the Aeronautical Science Foundation of China(20151353018)
文摘This paper is concerned with the recursive filtering problem for a class of discrete-time nonlinear stochastic systems in the presence of multi-sensor measurement delay. The delay occurs in a multi-step and asynchronous manner, and the delay probability of each sensor is assumed to be known or unknown. Firstly, a new model is constructed to describe the measurement process, based on which a new particle filter is developed with the ability to fuse multi-sensor information in the case of known delay probability.In addition, an online delay probability estimation module is introduced in the particle filtering framework, which leads to another new filter that can be implemented without the prior knowledge of delay probability. More importantly, since there is no complex iterative operation, the resulting filter can be implemented recursively and is suitable for many real-time applications. Simulation results show the effectiveness of the proposed filters.
基金Project(61271296) supported by the National Natural Science Foundation of China
文摘The current measurement was exploited in a more efficient way. Firstly, the system equation was updated by introducing a correction term, which depends on the current measurement and can be obtained by running a suboptimal filter. Then, a new importance density function(IDF) was defined by the updated system equation. Particles drawn from the new IDF are more likely to be in the significant region of state space and the estimation accuracy can be improved. By using different suboptimal filter, different particle filters(PFs) can be developed in this framework. Extensions of this idea were also proposed by iteratively updating the system equation using particle filter itself, resulting in the iterated particle filter. Simulation results demonstrate the effectiveness of the proposed IDF.