In recent years,the concept of digital human has attracted widespread attention from all walks of life,and the modelling of high-fidelity human bodies,heads,and hands has been intensively studied.This paper focuses on...In recent years,the concept of digital human has attracted widespread attention from all walks of life,and the modelling of high-fidelity human bodies,heads,and hands has been intensively studied.This paper focuses on head modelling and proposes a generic head parametric model based on neural radiance fields.Specifically,we first use face recognition networks and 3D facial expression database FaceWarehouse to parameterize identity and expression semantics,respectively,and use both as conditional inputs to build a neural radiance field for the human head,thereby improving the head model’s representation ability while ensuring editing capabilities for the identity and expression of the rendered results;then,through a combination of volume rendering and neural rendering,the 3D representation of the head is rapidly rendered into the 2D plane,producing a high-fidelity image of the human head.Thanks to the well-designed loss functions and good implicit representation of the neural radiance field,our model can not only edit the identity and expression independently,but also freely modify the virtual camera position of the rendering results.It has excellent multi-view consistency,and has many applications in novel view synthesis,pose driving and more.展开更多
The parametric scattering center model of radar tar-get has the advantages of simplicity,sparsity and mechanism relevant,making it widely applied in fields such as radar data compression and rapid generation,radar ima...The parametric scattering center model of radar tar-get has the advantages of simplicity,sparsity and mechanism relevant,making it widely applied in fields such as radar data compression and rapid generation,radar imaging,feature extraction and recognition.This paper summarizes and analyzes the research situation,development trend,and difficult prob-lems on scattering center(SC)parametric modeling from three aspects:parametric representation,determination method of model parameters,and application.展开更多
The parametric temporal data model captures a real world entity in a single tuple, which reduces query language complexity. Such a data model, however, is difficult to be implemented on top of conventional databases b...The parametric temporal data model captures a real world entity in a single tuple, which reduces query language complexity. Such a data model, however, is difficult to be implemented on top of conventional databases because of its unfixed attribute sizes. XML is a matured technology and can be an elegant solution for such challenge. Representing data in XML trigger a question about storage efficiency. The goal of this work is to provide a straightforward answer to such a question. To this end, we compare three different storage models for the parametric temporal data model and show that XML is not worse than any other approaches. Furthermore, XML outperforms the other storages under certain conditions. Therefore, our simulation results provide a positive indication that the myth about XML is not true in the parametric temporal data model.展开更多
Regarding excavation-damaged zone (EDZ) around underground opening as non-homogeneous rockmass with spatial deterioration effect on stuffiness and strength, a parametric model of EDZ using radius-displacement-depend...Regarding excavation-damaged zone (EDZ) around underground opening as non-homogeneous rockmass with spatial deterioration effect on stuffiness and strength, a parametric model of EDZ using radius-displacement-dependent deformation modulus (RDDM) was proposed. Considering the nonlinearity characteristic of deformation and locality otherness of surrounding rock, deterioration parameter field of deformation modulus of rockmass around opening was quantitatively calculated through a given function. Applicability for multi-cavern condition and parameter sensibility of the model was analyzed by numerical experiments using synthetic data. Furthermore, the model was applied to identify EDZ of underground caverns of Pubugou hydropower station by calculating deterioration parameter field. Based on the parametric analysis of spatial effect and geological investigation, it is recognized that large radial deformation of deep fractured rock at the spandrel position and insufficient supporting bolts mainly result in great deformation pressure to act on the shotcrete and cause partial crack and spalling. It is shown that deterioration parameter field along the longitudinal axis of main powerhouse is evidently non-homogeneous in space and distributes exponentially along the radius from the opening. The model provides a simple and convenient way to identify the EDZ in the working state for rapid construction feedback analysis and support optimization of underground cavem from quantitative point of view and also aids in interpreting monitoring displacements and estimating support requirements.展开更多
There have been a great demand for a suitable and convenient method in the field of buckling analysis of stiffened ship structures, which is essential to structural safety assessment and is significantly time-consumin...There have been a great demand for a suitable and convenient method in the field of buckling analysis of stiffened ship structures, which is essential to structural safety assessment and is significantly time-consuming. Modeling, buckling behaviors and ultimate strength prediction of stiffened panels were investigated. The modeling specification including nonlinear finite element model and imperfections generation, and post-buckling analysis procedure of stiffened plates were demonstrated. And a software tool using set-based finite element method was developed and executed in the MSC. Marc environment. Different types of stiffen panels of marine structures have been employed to investigate the buckling behavior and assess the validity in the estimation of ultimate strength. A comparison between results of the generally accepted methods, experiments and the software tool developed was demonstrated. It is shown that the software tool can predict the ultimate capacity of stiffened panels with imperfections with a good accuracy.展开更多
The quality of the micro-mechanical machining outcome depends significantly on the tracking performance of the miniaturized linear motor drive precision stage. The tracking behavior of a direct drive design is prone t...The quality of the micro-mechanical machining outcome depends significantly on the tracking performance of the miniaturized linear motor drive precision stage. The tracking behavior of a direct drive design is prone to uncertainties such as model parameter variations and disturbances. Robust optimal tracking controller design for this kind of precision stages with mass and damping ratio uncertainties was researched. The mass and damping ratio uncertainties were modeled as the structured parametric uncertainty model. An identification method for obtaining the parametric uncertainties was developed by using unbiased least square technique. The instantaneous frequency bandwidth of the external disturbance signals was analyzed by using short time Fourier transform technique. A two loop tracking control strategy that combines the p-synthesis and the disturbance observer (DOB) techniques was proposed. The p-synthesis technique was used to design robust optimal controllers based on structured uncertainty models. By complementing the/z controller, the DOB was applied to further improving the disturbance rejection performance. To evaluate the positioning performance of the proposed control strategy, the comparative experiments were conducted on a prototype micro milling machine among four control schemes: the proposed two-loop tracking control, the single loop μ control, the PID control and the PID with DOB control. The disturbance rejection performances, the root mean square (RMS) tracking errors and the performance robustness of different control schemes were studied. The results reveal that the proposed control scheme has the best positioning performance. It reduces the maximal errors caused by disturbance forces such as friction force by 60% and the RMS errors by 63.4% compared with the PID control. Compared to PID with DOB control, it reduces the RMS errors by 29.6%.展开更多
In aerial robots' visual navigation, it is essential yet very difficult to detect the attitude and position of the robots operated in real time. By introducing a new parametric model, the problem can be reduced from ...In aerial robots' visual navigation, it is essential yet very difficult to detect the attitude and position of the robots operated in real time. By introducing a new parametric model, the problem can be reduced from almost unmanageable to be partly solved, though not fully, as per the requirement. In this parametric approach, a multi-scale least square method is formulated first. By propagating as well as improving the parameters down from layer to layer of the image pyramid, a new global feature line can then be detected to parameterize the attitude of the robots. Furthermore, this approach paves the way for segmenting the image into distinct parts, which can be realized by deploying a Bayesian classifier on the picture cell level. Comparison with the Hough transform based method in terms of robustness and precision shows that this multi-scale least square algorithm is considerably more robust to noises. Some discussions are also given.展开更多
文摘In recent years,the concept of digital human has attracted widespread attention from all walks of life,and the modelling of high-fidelity human bodies,heads,and hands has been intensively studied.This paper focuses on head modelling and proposes a generic head parametric model based on neural radiance fields.Specifically,we first use face recognition networks and 3D facial expression database FaceWarehouse to parameterize identity and expression semantics,respectively,and use both as conditional inputs to build a neural radiance field for the human head,thereby improving the head model’s representation ability while ensuring editing capabilities for the identity and expression of the rendered results;then,through a combination of volume rendering and neural rendering,the 3D representation of the head is rapidly rendered into the 2D plane,producing a high-fidelity image of the human head.Thanks to the well-designed loss functions and good implicit representation of the neural radiance field,our model can not only edit the identity and expression independently,but also freely modify the virtual camera position of the rendering results.It has excellent multi-view consistency,and has many applications in novel view synthesis,pose driving and more.
基金supported by the National Natural Science Foundation of China(62231001).
文摘The parametric scattering center model of radar tar-get has the advantages of simplicity,sparsity and mechanism relevant,making it widely applied in fields such as radar data compression and rapid generation,radar imaging,feature extraction and recognition.This paper summarizes and analyzes the research situation,development trend,and difficult prob-lems on scattering center(SC)parametric modeling from three aspects:parametric representation,determination method of model parameters,and application.
基金supported by the National Research Foundation in Korea through contract N-12-NM-IR05
文摘The parametric temporal data model captures a real world entity in a single tuple, which reduces query language complexity. Such a data model, however, is difficult to be implemented on top of conventional databases because of its unfixed attribute sizes. XML is a matured technology and can be an elegant solution for such challenge. Representing data in XML trigger a question about storage efficiency. The goal of this work is to provide a straightforward answer to such a question. To this end, we compare three different storage models for the parametric temporal data model and show that XML is not worse than any other approaches. Furthermore, XML outperforms the other storages under certain conditions. Therefore, our simulation results provide a positive indication that the myth about XML is not true in the parametric temporal data model.
基金Project(2010CB732005) supported by the National Basic Research Program of ChinaProjects(51279136, 51209164) supported by the National Natural Science Foundation of China
文摘Regarding excavation-damaged zone (EDZ) around underground opening as non-homogeneous rockmass with spatial deterioration effect on stuffiness and strength, a parametric model of EDZ using radius-displacement-dependent deformation modulus (RDDM) was proposed. Considering the nonlinearity characteristic of deformation and locality otherness of surrounding rock, deterioration parameter field of deformation modulus of rockmass around opening was quantitatively calculated through a given function. Applicability for multi-cavern condition and parameter sensibility of the model was analyzed by numerical experiments using synthetic data. Furthermore, the model was applied to identify EDZ of underground caverns of Pubugou hydropower station by calculating deterioration parameter field. Based on the parametric analysis of spatial effect and geological investigation, it is recognized that large radial deformation of deep fractured rock at the spandrel position and insufficient supporting bolts mainly result in great deformation pressure to act on the shotcrete and cause partial crack and spalling. It is shown that deterioration parameter field along the longitudinal axis of main powerhouse is evidently non-homogeneous in space and distributes exponentially along the radius from the opening. The model provides a simple and convenient way to identify the EDZ in the working state for rapid construction feedback analysis and support optimization of underground cavem from quantitative point of view and also aids in interpreting monitoring displacements and estimating support requirements.
基金Projects(51575535,51805551)supported by the National Natural Science Foundation of ChinaProject(ZZYJKT2018-15)supported by the of State Key Laboratory of High Performance Complex Manufacturing,China+1 种基金Project(2015CX002)supported by the Innovation-driven Plan in Central South University,ChinaProject(2018BB30501)supported by the Key R&D Program of Liuzhou City,China
文摘There have been a great demand for a suitable and convenient method in the field of buckling analysis of stiffened ship structures, which is essential to structural safety assessment and is significantly time-consuming. Modeling, buckling behaviors and ultimate strength prediction of stiffened panels were investigated. The modeling specification including nonlinear finite element model and imperfections generation, and post-buckling analysis procedure of stiffened plates were demonstrated. And a software tool using set-based finite element method was developed and executed in the MSC. Marc environment. Different types of stiffen panels of marine structures have been employed to investigate the buckling behavior and assess the validity in the estimation of ultimate strength. A comparison between results of the generally accepted methods, experiments and the software tool developed was demonstrated. It is shown that the software tool can predict the ultimate capacity of stiffened panels with imperfections with a good accuracy.
基金Project(50875257) supported by the National Natural Science Foundation of China
文摘The quality of the micro-mechanical machining outcome depends significantly on the tracking performance of the miniaturized linear motor drive precision stage. The tracking behavior of a direct drive design is prone to uncertainties such as model parameter variations and disturbances. Robust optimal tracking controller design for this kind of precision stages with mass and damping ratio uncertainties was researched. The mass and damping ratio uncertainties were modeled as the structured parametric uncertainty model. An identification method for obtaining the parametric uncertainties was developed by using unbiased least square technique. The instantaneous frequency bandwidth of the external disturbance signals was analyzed by using short time Fourier transform technique. A two loop tracking control strategy that combines the p-synthesis and the disturbance observer (DOB) techniques was proposed. The p-synthesis technique was used to design robust optimal controllers based on structured uncertainty models. By complementing the/z controller, the DOB was applied to further improving the disturbance rejection performance. To evaluate the positioning performance of the proposed control strategy, the comparative experiments were conducted on a prototype micro milling machine among four control schemes: the proposed two-loop tracking control, the single loop μ control, the PID control and the PID with DOB control. The disturbance rejection performances, the root mean square (RMS) tracking errors and the performance robustness of different control schemes were studied. The results reveal that the proposed control scheme has the best positioning performance. It reduces the maximal errors caused by disturbance forces such as friction force by 60% and the RMS errors by 63.4% compared with the PID control. Compared to PID with DOB control, it reduces the RMS errors by 29.6%.
文摘In aerial robots' visual navigation, it is essential yet very difficult to detect the attitude and position of the robots operated in real time. By introducing a new parametric model, the problem can be reduced from almost unmanageable to be partly solved, though not fully, as per the requirement. In this parametric approach, a multi-scale least square method is formulated first. By propagating as well as improving the parameters down from layer to layer of the image pyramid, a new global feature line can then be detected to parameterize the attitude of the robots. Furthermore, this approach paves the way for segmenting the image into distinct parts, which can be realized by deploying a Bayesian classifier on the picture cell level. Comparison with the Hough transform based method in terms of robustness and precision shows that this multi-scale least square algorithm is considerably more robust to noises. Some discussions are also given.