Zirconium,titanium,and other hexagonally close-packed(HCP)metals and their alloys are representative high specific strength,high reaction enthalpy,and high thermal conductivity structural materials.In this study,two t...Zirconium,titanium,and other hexagonally close-packed(HCP)metals and their alloys are representative high specific strength,high reaction enthalpy,and high thermal conductivity structural materials.In this study,two typical HCP metals,zirconium,and titanium,were applied to reactive materials(RMs)to prepare Zr/PTFE/W RMs and Ti/PTFE/W RMs,validating the feasibility of HCP metal/PTFE/W RMs.The impact response process of typical HCP metal/PTFE/W RMs under high-velocity dynamic loads was studied using shock equations of state(EOS)based on porous mixtures and chemical reaction kinetics equations.An improved hemispherical quasi-sealed test chamber was employed to measure the energy release characteristic curves of 10 types of Zr/PTFE/W RMs and Ti/PTFE/W RMs under impact velocities ranging from 500 m/s to 1300 m/s.The datasets of the impact-induced energy release characteristics of HCP metal/PTFE/W RMs were established.Additionally,the energy release efficiency of HCP metal/PTFE/W RMs under impact was predicted using the support vector regression(SVR)kernel function model.The datasets of Zr/PTFE/W RMs and Ti/PTFE/W RMs with W contents of 0%,25%,50%,and 75%were used as test sets,respectively.The model predictions showed a high degree of agreement with the experimental data,with mean absolute errors(MAE)of 4.8,6.5,4.6,and 4.1,respectively.展开更多
基金sponsored by the National Natural Science Foundation of China(Grant Nos.U2241285,62201267)。
文摘Zirconium,titanium,and other hexagonally close-packed(HCP)metals and their alloys are representative high specific strength,high reaction enthalpy,and high thermal conductivity structural materials.In this study,two typical HCP metals,zirconium,and titanium,were applied to reactive materials(RMs)to prepare Zr/PTFE/W RMs and Ti/PTFE/W RMs,validating the feasibility of HCP metal/PTFE/W RMs.The impact response process of typical HCP metal/PTFE/W RMs under high-velocity dynamic loads was studied using shock equations of state(EOS)based on porous mixtures and chemical reaction kinetics equations.An improved hemispherical quasi-sealed test chamber was employed to measure the energy release characteristic curves of 10 types of Zr/PTFE/W RMs and Ti/PTFE/W RMs under impact velocities ranging from 500 m/s to 1300 m/s.The datasets of the impact-induced energy release characteristics of HCP metal/PTFE/W RMs were established.Additionally,the energy release efficiency of HCP metal/PTFE/W RMs under impact was predicted using the support vector regression(SVR)kernel function model.The datasets of Zr/PTFE/W RMs and Ti/PTFE/W RMs with W contents of 0%,25%,50%,and 75%were used as test sets,respectively.The model predictions showed a high degree of agreement with the experimental data,with mean absolute errors(MAE)of 4.8,6.5,4.6,and 4.1,respectively.