期刊文献+
共找到44,114篇文章
< 1 2 250 >
每页显示 20 50 100
基于神经网络模型的煤层气产能预测研究
1
作者 金毅 郑晨晖 +5 位作者 宋慧波 马家恒 杨运航 刘顺喜 张昆 倪小明 《河南理工大学学报(自然科学版)》 CAS 北大核心 2025年第1期46-56,共11页
目的煤层气产能主要受地质和工程因素影响,阐明这些因素对煤层气井产能的影响机制是实现储层精细改造和煤层气井提产的基础。方法本文以沁水盆地柿庄南区块为研究对象,综合考虑地质背景、储层物性和动态排采数据,利用神经网络算法开展... 目的煤层气产能主要受地质和工程因素影响,阐明这些因素对煤层气井产能的影响机制是实现储层精细改造和煤层气井提产的基础。方法本文以沁水盆地柿庄南区块为研究对象,综合考虑地质背景、储层物性和动态排采数据,利用神经网络算法开展煤层气产能预测。首先,利用灰色关联分析法遴选出10个地质参数作为煤层气产能预测的主控因素,在此基础上,运用模糊数学法实现研究区34口煤层气井富集区划分,最后,根据分类结果,结合实际排采数据,分别利用BP(back propagation)和LSTM(long short-term memory)神经网络算法实现煤层气井日产气量预测。结果结果表明:(1)渗透率、含气饱和度和储层压力梯度等10个参数是影响研究区煤层气产气性能的关键因素;(2)利用模糊数学评价方法评价煤层气的富集,可将研究区34口井产气效果划分为有利区、较有利区和不利区;(3)依托LSTM算法建立了煤储层日产气量预测模型,预测误差值为4.06%~14.79%,平均误差值为11.09%,预测精度明显高于BP神经网络模型,结论根据LSTM算法建立的煤储层日产气量预测模型稳定性好且预测精度高,可作为煤储层产能长程预测的一种有效手段,进而为煤层气开发工艺布施与排采方案制定提供科学依据。 展开更多
关键词 LSTM神经网络 BP神经网络 灰色关联分析 产能预测
在线阅读 下载PDF
基于物联网和卷积神经网络的智能农机安全驾驶系统 被引量:1
2
作者 张砚雪 《农机化研究》 北大核心 2025年第3期211-216,共6页
基于物联网和卷积神经网络的智能农机安全驾驶系统是一种创新的农业技术应用,通过将农机设备的摄像装置连接到互联网上,实现对农机设备和驾驶员的实时监测和数据采集;再利用卷积神经网络技术对采集到的驾驶数据进行特征提取和驾驶行为... 基于物联网和卷积神经网络的智能农机安全驾驶系统是一种创新的农业技术应用,通过将农机设备的摄像装置连接到互联网上,实现对农机设备和驾驶员的实时监测和数据采集;再利用卷积神经网络技术对采集到的驾驶数据进行特征提取和驾驶行为分类与识别,实现对驾驶行为的自动监测和预警。实验结果表明:系统对驾驶行为的类别检测准确率较高,可以提高农机驾驶安全性和驾驶效率,为农业生产提供更加智能化和高效的服务。 展开更多
关键词 物联网 卷积神经网络 智能农机 安全驾驶 驾驶行为 预警
在线阅读 下载PDF
基于MSCNN-GRU神经网络补全测井曲线和可解释性的智能岩性识别
3
作者 王婷婷 王振豪 +2 位作者 赵万春 蔡萌 史晓东 《石油地球物理勘探》 北大核心 2025年第1期1-11,共11页
针对传统岩性识别方法在处理测井曲线缺失、准确性以及模型可解释性等方面的不足,提出了一种基于MSCNN-GRU神经网络补全测井曲线和Optuna超参数优化的XGBoost模型的可解释性的岩性识别方法。首先,针对测井曲线在特定层段丢失或失真的问... 针对传统岩性识别方法在处理测井曲线缺失、准确性以及模型可解释性等方面的不足,提出了一种基于MSCNN-GRU神经网络补全测井曲线和Optuna超参数优化的XGBoost模型的可解释性的岩性识别方法。首先,针对测井曲线在特定层段丢失或失真的问题,引入了基于多尺度卷积神经网络(MSCNN)与门控循环单元(GRU)神经网络相结合的曲线重构方法,为后续的岩性识别提供了准确的数据基础;其次,利用小波包自适应阈值方法对数据进行去噪和归一化处理,以减少噪声对岩性识别的影响;然后,采用Optuna框架确定XGBoost算法的超参数,建立了高效的岩性识别模型;最后,利用SHAP可解释性方法对XGBoost模型进行归因分析,揭示了不同特征对于岩性识别的贡献度,提升了模型的可解释性。结果表明,Optuna-XGBoost模型综合岩性识别准确率为79.91%,分别高于支持向量机(SVM)、朴素贝叶斯、随机森林三种神经网络模型24.89%、12.45%、6.33%。基于Optuna-XGBoost模型的SHAP可解释性的岩性识别方法具有更高的准确性和可解释性,能够更好地满足实际生产需要。 展开更多
关键词 岩性识别 多尺度卷积神经网络 门控循环单元神经网络 XGBoost 超参数优化 可解释性
在线阅读 下载PDF
基于卷积-长短记忆神经网络的页岩气井短期产量预测与概率性评价
4
作者 郭建春 任文希 +3 位作者 曾凡辉 刘彧轩 段又菁 罗扬 《钻采工艺》 北大核心 2025年第1期130-137,共8页
页岩气赋存方式多样、渗流机理复杂,气井生产制度多变,准确预测页岩气井产量难度大。针对这一问题,文章基于数据驱动的思想,对历史生产数据进行了预处理,建立了由产量、油嘴尺寸、生产时间和关井时间组成的多维时间序列,结合卷积神经网... 页岩气赋存方式多样、渗流机理复杂,气井生产制度多变,准确预测页岩气井产量难度大。针对这一问题,文章基于数据驱动的思想,对历史生产数据进行了预处理,建立了由产量、油嘴尺寸、生产时间和关井时间组成的多维时间序列,结合卷积神经网络(CNN)和长短记忆神经网络(LSTM),基于混合式深度学习架构,建立了基于卷积-长短记忆神经网络的页岩气井短期产量预测模型(CNN-LSTM)。CNN-LSTM采用CNN提取高维特征之间的交互作用信息,并利用LSTM提取这些特征的时序信息,实现了交互作用信息和时序信息的融合。生产数据测试表明:CNN-LSTM考虑了生产制度的影响,因此其产量预测精度高于单变量LSTM和多变量LSTM。进一步发展了基于核密度估计理论的产量概率性预测方法,实现了产量预测结果的不确定分析,获得了未来气井产量的变化范围。研究成果有望为页岩气井生产动态分析、产量预测和生产管理提供支撑。 展开更多
关键词 页岩气井 产量预测 神经网络 不确定分析 数据驱动
在线阅读 下载PDF
基于小波包分解和神经网络集成群的滚动轴承故障诊断
5
作者 柴立平 孟壮壮 +1 位作者 石海峡 李强 《合肥工业大学学报(自然科学版)》 北大核心 2025年第4期447-454,共8页
文章提出一种将多个神经网络相结合的神经网络集成群算法进行滚动轴承故障诊断。首先对原始振动信号进行小波包变换,分别采用小波包能量和小波包样本熵作为特征向量;其次采用多个粒子群优化反向传播(particle swarm optimization-back p... 文章提出一种将多个神经网络相结合的神经网络集成群算法进行滚动轴承故障诊断。首先对原始振动信号进行小波包变换,分别采用小波包能量和小波包样本熵作为特征向量;其次采用多个粒子群优化反向传播(particle swarm optimization-back propagation,PSO-BP)神经网络分别对轴承进行故障诊断,比较分析小波包能量和小波包样本熵作为特征向量的适配程度;再以多个神经网络作为神经网络集成群的基础子网络,通过统计耦合、输出耦合和统计输出耦合形成神经网络集成群的二级网络;最后通过最终统计耦合输出神经网络集成群的分类结果。研究结果表明,该方法可获得理想的滚动轴承故障诊断准确率,在负载变化时具有良好的泛化性能。 展开更多
关键词 滚动轴承 故障诊断 小波包变换 粒子群优化反向传播神经网络 神经网络集成群
在线阅读 下载PDF
考虑裂纹分形维数的平行黏结模型细观参数标定的神经网络模型
6
作者 龚囱 戚燕顺 +4 位作者 缪浩杰 肖琦 熊良锋 曾鹏 赵奎 《岩土力学》 北大核心 2025年第1期327-336,共10页
针对试错法在平行黏结模型细观参数标定过程中存在繁琐耗时,且无法定量评价数值模拟与室内试验的裂纹匹配程度等局限性,统计并分析了近10年平行黏结模型细观参数取值范围,采用盒计数法获取了数值模拟试验、室内试验所得破坏后岩石表面... 针对试错法在平行黏结模型细观参数标定过程中存在繁琐耗时,且无法定量评价数值模拟与室内试验的裂纹匹配程度等局限性,统计并分析了近10年平行黏结模型细观参数取值范围,采用盒计数法获取了数值模拟试验、室内试验所得破坏后岩石表面裂纹分形维数。在此基础上,建立了以宏观弹性模量、宏观泊松比、峰值强度和裂纹分形维数等4个参数为输入层,黏结弹性模量、黏结法向与切向刚度比、黏结内聚力、黏结内摩擦角、黏结抗拉强度和摩擦系数等6个细观参数为输出层的神经网络模型,对比分析了考虑与不考虑裂纹分形维数时平行黏结模型细观参数标定效果。研究结果表明:(1)所建立的神经网络模型具有较好的收敛速度、预测精度与泛化性能,测试集输出数据与期望值误差约为3.34%。(2)将裂纹分形维数纳入神经网络模型后,数值模拟所得弹性模量、峰值应力与泊松比等宏观参数与室内试验结果的误差小于3.00%,优于不考虑裂纹分形维数标定结果。(3)该方法可定量保障数值模拟所得裂纹不规则性与室内试验结果的一致性,其在一定程度上可视为对现有神经网络模型细观参数标定结果的修正。研究成果可为提高平行黏结模型细观参数标定效果提供新思路。 展开更多
关键词 分形维数 颗粒流 平行黏结模型 参数标定 神经网络
在线阅读 下载PDF
基于图神经网络和用户长短期偏好的会话推荐
7
作者 卢官明 柯润宇 +2 位作者 卢峻禾 丁佳伟 魏金生 《南京邮电大学学报(自然科学版)》 北大核心 2025年第2期77-85,共9页
针对现有的会话推荐方法没有考虑用户长期偏好以及不同项目之间相关性的问题,提出了一种基于图神经网络和用户长短期偏好的会话推荐模型(GNN⁃LSTUP)。首先,基于所有会话构建全局会话图,通过融入相关性编码的图神经网络和注意力机制来挖... 针对现有的会话推荐方法没有考虑用户长期偏好以及不同项目之间相关性的问题,提出了一种基于图神经网络和用户长短期偏好的会话推荐模型(GNN⁃LSTUP)。首先,基于所有会话构建全局会话图,通过融入相关性编码的图神经网络和注意力机制来挖掘用户长期偏好;然后,通过构建局部会话图并利用图神经网络和注意力机制来捕捉用户短期偏好;最后,通过求和池化操作融合用户长、短期偏好,以便更准确地预测用户下一次交互行为。在Diginetica、Tmall和Nowplaying数据集上进行了实验,结果表明,提出的GNN⁃LSTUP在Diginetica数据集上取得的P@20和MRR@20分别为54.19%和18.94%,在Tmall数据集上取得的P@20和MRR@20分别为34.68%和16.96%,在Nowplaying数据集上取得的P@20和MRR@20分别为23.32%和8.62%,优于其他已有的会话推荐模型。 展开更多
关键词 会话推荐 神经网络 用户偏好 相关性
在线阅读 下载PDF
基于短时随机充电数据和优化卷积神经网络的锂电池健康状态估计
8
作者 申江卫 折亦鑫 +4 位作者 舒星 刘永刚 魏福星 夏雪磊 陈峥 《储能科学与技术》 北大核心 2025年第4期1585-1595,共11页
用户充电过程较强的随机性,导致很难获得完整且固定的充电段用于精确表征电池健康状态的变化。针对充电行为的无序性,提出了一种基于随机健康指标和卷积神经网络的电池健康状态估计方法。对锂电池的原始充电电压时序数据进行分割作为随... 用户充电过程较强的随机性,导致很难获得完整且固定的充电段用于精确表征电池健康状态的变化。针对充电行为的无序性,提出了一种基于随机健康指标和卷积神经网络的电池健康状态估计方法。对锂电池的原始充电电压时序数据进行分割作为随机充电数据,使用单一卷积神经网络架构从中自适应提取老化特征,并采用蜣螂优化算法对其参数寻优,建立了多阶段模型。仅使用短时随机原始充电电压数据即可实现电池健康状态估计,且有效适用于不同充电模式和充电速率。实验测试验证结果表明,使用连续5 s(100个数据点)的原始电压时序数据,在恒流-恒压充电模式下,锂电池健康状态估计结果平均绝对误差小于2.07%,在多阶段恒流充电模式下,锂电池健康状态估计结果平均绝对误差小于1.22%。 展开更多
关键词 健康状态 随机充电 数据分割 卷积神经网络 锂离子电池
在线阅读 下载PDF
响应面法结合深度神经网络优化刺五加果多糖提取工艺
9
作者 苏适 董立强 +3 位作者 黎莉 王双侠 王喜庆 张金凤 《包装与食品机械》 北大核心 2025年第2期66-74,共9页
为提高刺五加果多糖的提取率,提出基于Box-Behnken响应面法与深度神经网络模型(deep neural network,DNN)协同优化的微波辅助离子液体提取工艺。通过响应面设计,筛选微波功率、离子液体浓度、提取时间及料液比等参数,并构建二次回归模型... 为提高刺五加果多糖的提取率,提出基于Box-Behnken响应面法与深度神经网络模型(deep neural network,DNN)协同优化的微波辅助离子液体提取工艺。通过响应面设计,筛选微波功率、离子液体浓度、提取时间及料液比等参数,并构建二次回归模型;利用DNN模型解析多因素间非线性关系,优化工艺条件。结果表明,DNN模型得到的最优工艺条件为微波功率350 W、离子液体浓度0.6 mol/L、提取时间35 min、料液比1∶24(g/mL),多糖提取率为16.71%,高于响应面法优化的提取工艺结果。体外抗氧化试验显示,刺五加果多糖对羟基自由基、DPPH自由基和ABTS^(+)·自由基的半数抑制浓度(IC_(50))分别为2.36,2.05,2.47 mg/mL。研究为刺五加果在功能性食品及抗衰老保健品开发中的应用提供理论依据。 展开更多
关键词 刺五加果 多糖 工艺优化 响应面法 深度神经网络 抗氧化活性
在线阅读 下载PDF
基于NSGA-Ⅱ和神经网络的长短叶片泵双目标参数优化
10
作者 梁兴 马志巍 +2 位作者 熊文龙 周泊 曹寒问 《水电能源科学》 北大核心 2025年第3期163-167,共5页
针对长短叶片泵参数优化问题,以叶片进口角、叶片出口角和叶片数量为变量,以泵扬程、效率为优化目标,采用拉丁超立方设计40组试验组成样本集,并利用CFD方法计算泵性能。在数值模拟的基础上,基于BP神经网络泵性能预测模型构建长短叶片泵... 针对长短叶片泵参数优化问题,以叶片进口角、叶片出口角和叶片数量为变量,以泵扬程、效率为优化目标,采用拉丁超立方设计40组试验组成样本集,并利用CFD方法计算泵性能。在数值模拟的基础上,基于BP神经网络泵性能预测模型构建长短叶片泵双目标优化函数,并采用NSGA-Ⅱ算法寻优,进而开展双目标泵参数优化研究。结果表明,基于BP神经网络预测泵性能较准确,其中效率偏差最大为1.98%,扬程偏差最大为1.82%。NSGA-Ⅱ算法所获得的最优方案在额定工况下比原型泵扬程、效率分别提高了7.4%、1.8%;对比优化前后泵内流速分布、压力脉动等,最优方案有效改善了流动的均匀性,减小了水力损失和压力脉动,使得叶轮内部流动更加稳定,为长短叶片泵参数优化设计提供了理论依据。 展开更多
关键词 长短叶片泵 性能优化 神经网络 NSGA-Ⅱ算法
在线阅读 下载PDF
基于BP神经网络结合ERA5数据的风电功率预测 被引量:1
11
作者 王婷婷 李斯胜 +4 位作者 于伟 能锋田 李星南 杨佳琳 熊亮 《储能科学与技术》 北大核心 2025年第1期183-189,共7页
随着我国风力发电技术的不断发展和完善,风电在电力系统运行和调度的作用越来越突出。为了高效准确地预测风电功率,减少大量风电入网带来的负面影响,本文基于BP神经网络结合ERA5数据对我国北方某风电场进行风电功率预测,并采用粒子群优... 随着我国风力发电技术的不断发展和完善,风电在电力系统运行和调度的作用越来越突出。为了高效准确地预测风电功率,减少大量风电入网带来的负面影响,本文基于BP神经网络结合ERA5数据对我国北方某风电场进行风电功率预测,并采用粒子群优化(particle swarm algorithm,PSO)算法优化模型,结合平均绝对误差、均方根误差和Pearson相关系数分析风电功率预测效果。结果表明,模型训练集中预测与实测风电功率变化趋势基本一致,呈现同增同减的趋势,BP模型的平均绝对误差为702.12 W,均方根误差为1000.18 W,相关系数为0.91,PSO-BP模型的平均绝对误差为700.75 W,均方根误差为995.16 W,相关系数为0.94;测试集中ERA5数据在一定程度上高估了风电功率,但整体趋势基本一致,BP模型的平均绝对误差为861.09 W,均方根误差为1150.86 W,相关系数为0.81;PSO-BP模型的平均绝对误差为829.55 W,均方根误差为1117.39 W,相关系数为0.83,模型的预测效果相对较好,PSO-BP模型相较于BP模型的预测效果均有一定程度的提高,在该区域的风电功率预测方面有较好的适用性。研究结果可为缺乏观测数据或观测数据质量不高的地区预测风电功率提供参考。 展开更多
关键词 风力发电 BP神经网络 ERA5再分析资料 粒子群优化算法 风电功率预测
在线阅读 下载PDF
基于改进标签策略与卷积神经网络的离格DOA估计方法
12
作者 袁野 吕昭 +2 位作者 汪淼 徐步云 李盼 《电讯技术》 北大核心 2025年第2期261-268,共8页
为了能够准确高效地对离格信号的波达方向(Direction of Arrival, DOA)进行估计,利用卷积神经网络来提取信号协方差矩阵中的深度特征信息,并采用改进型标签策略来确保网络的估计精度和效率。具体来说,通过带小数的标签来注释协方差矩阵... 为了能够准确高效地对离格信号的波达方向(Direction of Arrival, DOA)进行估计,利用卷积神经网络来提取信号协方差矩阵中的深度特征信息,并采用改进型标签策略来确保网络的估计精度和效率。具体来说,通过带小数的标签来注释协方差矩阵构成的张量,并配合上改进后的二进制交叉熵损失函数来使得所提出的小数标签能够用于网络训练。针对DOA估计对应的多标签—多分类的问题,使用了包含6层结构的卷积神经网络的输出单元类别以及幅度来分别对离格信号的DOA整数部分与小数部分进行重构。通过与6种现有典型方法的均方根误差(Root Mean Square Error, RMSE)仿真对比,所提方法能够在信噪比为-10 dB的情况下保持着RMSE<0.5°的优秀表现。虽然无法在较少快拍下正常工作,但该方法在快拍数大于8的条件下仍然保持着RMSE<1°的表现性能。同时,在信号数量为5时,所提方法依然具有较高的估计稳定性,且计算速度能够达到毫秒级,用时明显低于其他方法。 展开更多
关键词 离格DOA估计 人工智能 卷积神经网络 监督学习
在线阅读 下载PDF
基于图神经网络模型校准的成员推理攻击
13
作者 谢丽霞 史镜琛 +2 位作者 杨宏宇 胡泽 成翔 《电子与信息学报》 北大核心 2025年第3期780-791,共12页
针对图神经网络(GNN)模型在其预测中常处于欠自信状态,导致该状态下实施成员推理攻击难度大且攻击漏报率高的问题,该文提出一种基于GNN模型校准的成员推理攻击方法。首先,设计一种基于因果推断的GNN模型校准方法,通过基于注意力机制的... 针对图神经网络(GNN)模型在其预测中常处于欠自信状态,导致该状态下实施成员推理攻击难度大且攻击漏报率高的问题,该文提出一种基于GNN模型校准的成员推理攻击方法。首先,设计一种基于因果推断的GNN模型校准方法,通过基于注意力机制的因果图提取、因果图与非因果图解耦、后门路径调整策略和因果关联图生成过程,构建用于训练GNN模型的因果关联图。其次,使用与目标因果关联图在相同数据分布下的影子因果关联图构建影子GNN模型,模拟目标GNN模型的预测行为。最后,使用影子GNN模型的后验概率构建攻击数据集以训练攻击模型,根据目标GNN模型对目标节点的后验概率输出推断其是否属于目标GNN模型的训练数据。在4个数据集上的实验结果表明,该文方法在2种攻击模式下面对不同架构的GNN模型进行攻击时,攻击准确率最高为92.6%,性能指标优于基线攻击方法,可有效地实施成员推理攻击。 展开更多
关键词 神经网络 成员推理攻击 模型校准 因果推断 隐私风险
在线阅读 下载PDF
基于SSA-ELM神经网络的室内可见光定位系统
14
作者 贾科军 牛振 +3 位作者 于凯 张志聪 彭铎 曹明华 《光通信研究》 北大核心 2025年第1期13-17,共5页
【目的】针对极限学习机(ELM)神经网络在室内可见光定位(VLP)中收敛不稳定,易陷入局部最优状态,导致定位精度降低的问题,文章引入了麻雀搜索算法(SSA)确定ELM神经网络的初始权值和阈值,提出了SSA-ELM神经网络算法。【方法】首先,采集定... 【目的】针对极限学习机(ELM)神经网络在室内可见光定位(VLP)中收敛不稳定,易陷入局部最优状态,导致定位精度降低的问题,文章引入了麻雀搜索算法(SSA)确定ELM神经网络的初始权值和阈值,提出了SSA-ELM神经网络算法。【方法】首先,采集定位区域内接收信号强度(RSS)与位置信息作为指纹数据;然后,训练SSA-ELM神经网络并得到预测模型,将测试集数据输入预测模型得到待测位置的定位结果;最后,设计了仿真实验和测试平台。【结果】仿真表明,在立体空间模型中0、0.3、0.6和0.9 m 4个接收高度,平均误差分别为1.73、1.86、2.18和3.47 cm,与反向传播(BP)、SSA-BP和ELM定位算法相比,SSA-ELM神经网络算法定位精度分别提高了83.55%、45.71%和26.26%,定位时间分别降低了36.48%、17.69%和6.61%。实验测试表明,文章所提SSA-ELM神经网络算法的平均定位误差为3.75 cm,比未优化的ELM神经网络定位精度提高了16.38%。【结论】SSA对ELM神经网络具有明显的优化作用,能够显著降低定位误差,减少定位时间。 展开更多
关键词 可见光通信 室内定位 极限学习机神经网络 麻雀搜索算法
在线阅读 下载PDF
高压电缆终端铅封缺陷超声图像卷积神经网络识别
15
作者 方春华 周固 +4 位作者 邵斌 胡冻三 夏荣 欧阳本红 普子恒 《应用声学》 北大核心 2025年第1期80-87,共8页
高压电缆终端铅封因安装工艺不当以及在外力作用下会出现孔洞、脱粘或裂缝等缺陷,严重影响输电线路稳定运行。为解决传统超声检测铅封缺陷是因通过人工观察超声图像而存在的效率和准确率偏低的问题,该文提出了一种基于卷积神经网络的高... 高压电缆终端铅封因安装工艺不当以及在外力作用下会出现孔洞、脱粘或裂缝等缺陷,严重影响输电线路稳定运行。为解决传统超声检测铅封缺陷是因通过人工观察超声图像而存在的效率和准确率偏低的问题,该文提出了一种基于卷积神经网络的高压电缆终端铅封缺陷超声图像识别方法,可以自动从铅封缺陷超声图像中学习特征并完成缺陷分类识别。建立了4种典型铅封缺陷超声图像样本库,搭建了铅封缺陷超声图像识别模型,采用经过规范化处理的超声图像数据对模型进行训练和测试。结果表明:通过调整卷积神经网络试验参数,能够快速准确地识别出铅封不同类型缺陷,准确率可以达到100%,表明该方法具有良好的鲁棒性,抗干扰能力强,对铅封缺陷具有良好的检测性能,在实际的终端铅封缺陷检测中具有很好的应用前景。 展开更多
关键词 电缆终端 铅封 超声图像识别 卷积神经网络 缺陷检测
在线阅读 下载PDF
基于改进傅里叶神经网络的多关节机器人实时负载辨识方法
16
作者 岳夏 李志滨 +3 位作者 张春良 王亚东 王宇华 龙尚斌 《振动与冲击》 北大核心 2025年第5期314-322,共9页
关节式机器人应用于各类生产环节,对负载进行实时监测是确保机器人安全运行的前提。但在某些特殊场景下无法直接测量负载,通常使用动力学方法间接求解,由于其非线性特性明显且模型参数的不确定性,负载识别的精度与效率一直不高。因此该... 关节式机器人应用于各类生产环节,对负载进行实时监测是确保机器人安全运行的前提。但在某些特殊场景下无法直接测量负载,通常使用动力学方法间接求解,由于其非线性特性明显且模型参数的不确定性,负载识别的精度与效率一直不高。因此该研究基于傅里叶神经网络提出了一种改进模型来实现负载辨识,以提高系统负载参数的预测精度与时效性。所提方法利用傅里叶神经网络中的卷积与频域截断机制快速获取特征信号,与前馈神经网络的输出结果进行数据融合得到辨识结果。所提方法相比动力学模型求解方法精度更高、计算速度更快,仅需学习预测范围内几个相间的样本集,就可识别预测范围内的任意结果,泛化能力好。同时进行网络敏感参数的分析,并与成熟神经网络算法进行性能比较。该方法将两种神经网络模型进行协同配合,能有效识别高维数据中的不同特征集,从而实现参数辨识,为复杂非线性系统的参数识别提供参考。 展开更多
关键词 工业机器人 傅里叶神经网络 动力学 实时 负载识别
在线阅读 下载PDF
基于生成对抗网络和卷积神经网络的高速铁路地震预警干扰信号识别方法
17
作者 宋晋东 栾世成 +7 位作者 李山有 马强 孙文韬 刘赫奕 周学影 姚鹍鹏 黄鹏杰 朱景宝 《中国铁道科学》 北大核心 2025年第1期225-232,共8页
为提升高速铁路地震预警系统中地震事件识别的可靠性,提出基于生成对抗网络(GAN)和卷积神经网络(CNN)的高速铁路地震预警干扰信号识别方法。首先,通过GAN对打夯干扰信号进行数据增强,以实现数据平衡;其次,设计并构建GAN-CNN打夯干扰信... 为提升高速铁路地震预警系统中地震事件识别的可靠性,提出基于生成对抗网络(GAN)和卷积神经网络(CNN)的高速铁路地震预警干扰信号识别方法。首先,通过GAN对打夯干扰信号进行数据增强,以实现数据平衡;其次,设计并构建GAN-CNN打夯干扰信号识别模型,并对其进行训练和测试;最后,通过对比试验,验证该模型在干扰信号识别中的有效性和准确性。结果表明:与未使用GAN进行数据增强的情况相比,所提方法识别打夯干扰信号和地震事件信号的准确率分别为99.60%和100%,性能显著提升;此外,GANCNN模型的交并比、准确率、召回率和综合能力评价指标也得到提高。该方法可为高速铁路地震预警干扰信号识别提供参考。 展开更多
关键词 地震预警 高速铁路 卷积神经网络 生成对抗网络 打夯干扰信号
在线阅读 下载PDF
基于改进卷积神经网络的风电机组叶片覆冰诊断方法研究
18
作者 邢作霞 张玥 +1 位作者 郭珊珊 张超 《太阳能学报》 北大核心 2025年第3期661-667,共7页
针对风电机组叶片覆冰影响机组运行安全和降低发电量的问题,提出一种基于极端梯度提升算法和麻雀搜索算法优化卷积神经网络的风电机组叶片覆冰诊断方法。首先,利用基于极端梯度提升算法计算实际机组监控和数据采集系统(SCADA)数据的特... 针对风电机组叶片覆冰影响机组运行安全和降低发电量的问题,提出一种基于极端梯度提升算法和麻雀搜索算法优化卷积神经网络的风电机组叶片覆冰诊断方法。首先,利用基于极端梯度提升算法计算实际机组监控和数据采集系统(SCADA)数据的特征权重,筛除冗余特征变量,降低诊断模型的复杂度、减少诊断时间;再利用卷积神经网络模型对筛选后SCADA数据进行特征提取建立叶片覆冰诊断分类模型;最后,利用麻雀搜索算法对诊断模型中的超参数寻优,提高诊断模型的准确率。实验结果表明提出的方法对叶片覆冰的诊断准确率达到98%,相比于长短期记忆网络、K近邻算法等分类模型诊断准确率更高。 展开更多
关键词 风电机组 故障诊断 叶片覆冰 神经网络 麻雀搜索算法
在线阅读 下载PDF
基于人工神经网络的三棱柱定向装药结构破片初速预测模型
19
作者 宁建国 汪齐 栗建桥 《兵工学报》 北大核心 2025年第3期200-213,共14页
棱柱形装药结构作为一种典型的非对称结构,其能量输出具有明显的方向性,预测其破片速度分布对于新型战斗部的结构设计和毁伤效率评估具有重要意义。针对棱柱形装药结构,建立一种基于人工神经网络的破片速度预测模型。为提高网络模型的... 棱柱形装药结构作为一种典型的非对称结构,其能量输出具有明显的方向性,预测其破片速度分布对于新型战斗部的结构设计和毁伤效率评估具有重要意义。针对棱柱形装药结构,建立一种基于人工神经网络的破片速度预测模型。为提高网络模型的效率和准确性,通过理论分析确定了影响破片速度分布的影响因素,为网络模型筛选出4个输入特征参数。通过调整这些特征参数的值,建立多组不同的数值模拟工况,通过数值模拟方法为网络模型提供数据集。用训练好的网络模型对测试集进行了预测,预测结果与数值模拟结果吻合较好,表明该网络模型预测棱柱形装药结构的破片分布具有较高的准确性,并且该神经网络模型具有良好的泛化能力。该神经网络模型具有计算速度快、预测精度高、易于建模等特点,可以较为精确地预测一端起爆条件下棱柱形结构的破片速度分布,为战斗部结构设计和毁伤效率评估提供数据参考。 展开更多
关键词 棱柱形壳体 破片初速 量纲分析 人工神经网络
在线阅读 下载PDF
基于神经网络的光纤温度估算方法的优化
20
作者 李苏雅 董艳唯 +4 位作者 李琳 张弛 李楠 宁琦 陈永辉 《光通信研究》 北大核心 2025年第1期83-88,共6页
【目的】为了有效估算基于布里渊散射的分布式光纤传感中光纤的温度,文章将多层前馈人工神经网络(ANN)应用于温度的估算。【方法】文章在Matlab软件中编写了用于光纤温度计算的单斜坡法、基于伪Voigt模型的最小二乘拟合法和ANN程序,同... 【目的】为了有效估算基于布里渊散射的分布式光纤传感中光纤的温度,文章将多层前馈人工神经网络(ANN)应用于温度的估算。【方法】文章在Matlab软件中编写了用于光纤温度计算的单斜坡法、基于伪Voigt模型的最小二乘拟合法和ANN程序,同时仿真产生了不同信噪比(SNR)下的布里渊谱,采用以上3种算法计算了光纤温度,验证了ANN方法的有效性。在此基础上基于以上仿真产生的布里渊谱研究了ANN的关键参数,即隐层数量、隐层神经元数量和训练目标对训练速度、温度计算时间和准确性的影响规律。【结果】结果表明,ANN方法在SNR为22和37 dB时最大温度误差分别仅为1.18和0.63℃,且计算时间仅为最小二乘拟合法的1/1000左右。当隐层神经元数量不变时,随着隐层层数的增加,训练时间明显下降,计算时间线性增加,但其对温度估算的准确性几乎无影响;随着隐层神经元数量的增加,训练时间和计算时间均增加,隐层有21个神经元时,训练时间近似为1个神经元的67倍,但其对温度估算的准确性几乎无影响;训练目标(布里渊频移误差的平方)小于临界值(约为1 MHz 2)时,随着训练目标的增加,温度误差几乎不变,超过临界值后,随着训练目标的增加,温度误差增大。【结论】采用多层前馈ANN应用于基于布里渊散射的分布式光纤传感中的光纤温度估算时,建议选择单隐层且隐层神经元选择1个,训练目标选择1 MHz 2。 展开更多
关键词 分布式光纤传感 布里渊散射 布里渊频移 人工神经网络 温度 优化
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部