叶面积指数(leaf area index,LAI)作为衡量作物生长状况的关键参数,对其进行精准高效的反演对于作物监测、产量预测等活动至关重要。然而,传统经验模型在估算LAI时常存在计算负荷重、泛化能力弱等问题。为实现青贮玉米多时序LAI精准、...叶面积指数(leaf area index,LAI)作为衡量作物生长状况的关键参数,对其进行精准高效的反演对于作物监测、产量预测等活动至关重要。然而,传统经验模型在估算LAI时常存在计算负荷重、泛化能力弱等问题。为实现青贮玉米多时序LAI精准、高效估算,该研究以甘肃省民乐县的大田青贮玉米LAI为研究对象,结合Landsat-8多光谱影像与同期实地采集的LAI数据,提出了4种基于EFAST全局敏感性分析方法的机器学习混合反演模型(MLP-PROSAIL、SVR-PROSAIL、RF-PROSAIL和GBM-PROSAIL)。通过对PROSAIL模型的输入参数进行敏感性分析,以便确定参数敏感度并准确模拟输出冠层反射率光谱。进一步对Landsat-8多光谱数据进行预处理和波段变换,并采用地理配准工具结合反距离加权插值的策略减少其尺度差异。同时利用贝叶斯超参数寻优和正则化技术优化模型不同的参数类型和激活函数,得到4种改进模型用于训练LAI与光谱数据,通过5折交叉验证法和留一验证法对4种模型的反演性能进行验证并选出最优模型。优化后的模型性能均有明显提升,其中,GBM-PROSAIL模型反演性能最优,拟合精度R^(2)为0.93、均方根误差(RMSE)为0.42。MLP-PROSAIL、SVR-PROSAIL和RF-PROSAIL模型的拟合精度R^(2)依次为0.85、0.88、0.90,RMSE依次为0.80、0.69、0.51。根据GBM-PROSAIL模型绘制的研究区多时序LAI反演空间分布结果表明:不同生长期青贮玉米LAI值存在明显差异,能较好反映其生长过程。该研究提出的混合反演模型具有较高的性能及较强的鲁棒性,可为多时序、大尺度作物监测、产量预测相关研究提供方法与思路。展开更多
以大豆叶面积指数(Leaf area index,LAI)反演为研究目标,利用PROSAIL模型和遗传算法优化后的BP神经网络模型,分别对重组自交系(Recombinant Inbred Lines,RIL)和自然野生大豆种群的LAI进行反演。结果表明,在对人工定向培育的RIL大豆种...以大豆叶面积指数(Leaf area index,LAI)反演为研究目标,利用PROSAIL模型和遗传算法优化后的BP神经网络模型,分别对重组自交系(Recombinant Inbred Lines,RIL)和自然野生大豆种群的LAI进行反演。结果表明,在对人工定向培育的RIL大豆种群冠层叶片LAI反演中,PROSAIL模型表现出了更优异的反演能力,而对品种繁多的自然野生大豆种群LAI反演中,遗传算法优化后的BP神经网络模型表现出了更好的适用性,并且上述2种模型在始粒期(R5)时性能最佳,PROSAIL模型和遗传算法优化后的BP神经网络模型R2分别为0.89和0.85,RMSE分别为0.11和0.13,EA均为97%,典型生育期内的反演性能均优于全生育期综合反演性能。因此,针对同一农作物不同种群的表型特征反演,需要根据研究对象的特征来选择合适的模型,以便于精确的估测大豆长势情况,为农作物的规模化育种监测提供数据支持。展开更多
为及时准确高效监测小麦叶面积指数(leaf area index,LAI),获取了冬小麦挑旗期和开花期地面实测光谱与无人机高光谱遥感影像数据,并基于查找表建立PROSAIL辐射传输模型得到冬小麦冠层模拟光谱数据,利用数学统计回归模型与偏最小二乘回...为及时准确高效监测小麦叶面积指数(leaf area index,LAI),获取了冬小麦挑旗期和开花期地面实测光谱与无人机高光谱遥感影像数据,并基于查找表建立PROSAIL辐射传输模型得到冬小麦冠层模拟光谱数据,利用数学统计回归模型与偏最小二乘回归法分别构建冬小麦LAI单变量、多变量预测模型,以实测LAI数据对预测结果进行精度评价,将最佳预测模型应用于无人机高光谱影像以分析LAI空间分布情况。结果表明,冬小麦各生育时期的预测模型均具有较高的预测精度,单变量预测模型和多变量预测模型的决定系数分别为0.598~0.717和0.577~0.755,其中以基于植被指数的多变量预测模型表现最优,其在开花期的验证精度最高,RMSE和MAPE分别为0.405和12.90%。在LAI空间分布图中,开花期预测效果优于挑旗期,各试验小区的LAI分布较为均匀。展开更多
文摘叶面积指数(leaf area index,LAI)作为衡量作物生长状况的关键参数,对其进行精准高效的反演对于作物监测、产量预测等活动至关重要。然而,传统经验模型在估算LAI时常存在计算负荷重、泛化能力弱等问题。为实现青贮玉米多时序LAI精准、高效估算,该研究以甘肃省民乐县的大田青贮玉米LAI为研究对象,结合Landsat-8多光谱影像与同期实地采集的LAI数据,提出了4种基于EFAST全局敏感性分析方法的机器学习混合反演模型(MLP-PROSAIL、SVR-PROSAIL、RF-PROSAIL和GBM-PROSAIL)。通过对PROSAIL模型的输入参数进行敏感性分析,以便确定参数敏感度并准确模拟输出冠层反射率光谱。进一步对Landsat-8多光谱数据进行预处理和波段变换,并采用地理配准工具结合反距离加权插值的策略减少其尺度差异。同时利用贝叶斯超参数寻优和正则化技术优化模型不同的参数类型和激活函数,得到4种改进模型用于训练LAI与光谱数据,通过5折交叉验证法和留一验证法对4种模型的反演性能进行验证并选出最优模型。优化后的模型性能均有明显提升,其中,GBM-PROSAIL模型反演性能最优,拟合精度R^(2)为0.93、均方根误差(RMSE)为0.42。MLP-PROSAIL、SVR-PROSAIL和RF-PROSAIL模型的拟合精度R^(2)依次为0.85、0.88、0.90,RMSE依次为0.80、0.69、0.51。根据GBM-PROSAIL模型绘制的研究区多时序LAI反演空间分布结果表明:不同生长期青贮玉米LAI值存在明显差异,能较好反映其生长过程。该研究提出的混合反演模型具有较高的性能及较强的鲁棒性,可为多时序、大尺度作物监测、产量预测相关研究提供方法与思路。
文摘以大豆叶面积指数(Leaf area index,LAI)反演为研究目标,利用PROSAIL模型和遗传算法优化后的BP神经网络模型,分别对重组自交系(Recombinant Inbred Lines,RIL)和自然野生大豆种群的LAI进行反演。结果表明,在对人工定向培育的RIL大豆种群冠层叶片LAI反演中,PROSAIL模型表现出了更优异的反演能力,而对品种繁多的自然野生大豆种群LAI反演中,遗传算法优化后的BP神经网络模型表现出了更好的适用性,并且上述2种模型在始粒期(R5)时性能最佳,PROSAIL模型和遗传算法优化后的BP神经网络模型R2分别为0.89和0.85,RMSE分别为0.11和0.13,EA均为97%,典型生育期内的反演性能均优于全生育期综合反演性能。因此,针对同一农作物不同种群的表型特征反演,需要根据研究对象的特征来选择合适的模型,以便于精确的估测大豆长势情况,为农作物的规模化育种监测提供数据支持。
文摘为及时准确高效监测小麦叶面积指数(leaf area index,LAI),获取了冬小麦挑旗期和开花期地面实测光谱与无人机高光谱遥感影像数据,并基于查找表建立PROSAIL辐射传输模型得到冬小麦冠层模拟光谱数据,利用数学统计回归模型与偏最小二乘回归法分别构建冬小麦LAI单变量、多变量预测模型,以实测LAI数据对预测结果进行精度评价,将最佳预测模型应用于无人机高光谱影像以分析LAI空间分布情况。结果表明,冬小麦各生育时期的预测模型均具有较高的预测精度,单变量预测模型和多变量预测模型的决定系数分别为0.598~0.717和0.577~0.755,其中以基于植被指数的多变量预测模型表现最优,其在开花期的验证精度最高,RMSE和MAPE分别为0.405和12.90%。在LAI空间分布图中,开花期预测效果优于挑旗期,各试验小区的LAI分布较为均匀。