为了提高电动汽车电池模组焊点缺陷检测中的图像配准精度,提出一种改进的图像配准优化方法。首先,对图片进行预处理后,使用改进的Qtree_ORB算法得到图像均匀分布的特征点,通过描述符融合对特征点进行描述;其次,经过汉明距离匹配后,通过...为了提高电动汽车电池模组焊点缺陷检测中的图像配准精度,提出一种改进的图像配准优化方法。首先,对图片进行预处理后,使用改进的Qtree_ORB算法得到图像均匀分布的特征点,通过描述符融合对特征点进行描述;其次,经过汉明距离匹配后,通过空间余弦值进行预筛选并使用渐进抽样一致性算法(PROSAC)得到强匹配点,同时计算出图像变换矩阵;最后,使用RMSProp(root mean square prop)算法对变换矩阵进行优化。实验结果表明该算法在电池包焊点缺陷检测中能有效减少误匹配,且配准速度较快,满足工业检测要求。展开更多
在低纹理场景中,基于点特征的同时定位与地图构建(Simultaneous Localization and Mapping,SLAM)算法很难追踪足够多的有效特征点,系统甚至无法正常工作.众所周知,丰富的线段特征存在在人造结构化环境中的地面与墙面交界处.因此,提出一...在低纹理场景中,基于点特征的同时定位与地图构建(Simultaneous Localization and Mapping,SLAM)算法很难追踪足够多的有效特征点,系统甚至无法正常工作.众所周知,丰富的线段特征存在在人造结构化环境中的地面与墙面交界处.因此,提出一种点线特征融合的双目视觉SLAM算法.在特征提取前,引入梯度密度滤波器加速线特征提取和提高线匹配的准确度,在特征点匹配阶段,采用渐进采样一致性(Progressive Sampling Consensus,PROSAC)算法剔除误匹配点,从而提高定位精度.此外,在特征的融合过程中引入加权思想.在构造误差函数时对点线特征权重进行合理分配.最后,通过在公开的数据集上得到的仿真并与一些优秀的算法进行对比,该算法性能优于PL-SLAM和LSD-SLAM算法,证明了算法的有效性和准确性.展开更多
文摘为了提高电动汽车电池模组焊点缺陷检测中的图像配准精度,提出一种改进的图像配准优化方法。首先,对图片进行预处理后,使用改进的Qtree_ORB算法得到图像均匀分布的特征点,通过描述符融合对特征点进行描述;其次,经过汉明距离匹配后,通过空间余弦值进行预筛选并使用渐进抽样一致性算法(PROSAC)得到强匹配点,同时计算出图像变换矩阵;最后,使用RMSProp(root mean square prop)算法对变换矩阵进行优化。实验结果表明该算法在电池包焊点缺陷检测中能有效减少误匹配,且配准速度较快,满足工业检测要求。