The submerged propeller is an efficient diving mix device,which is applicable for oxidation ditch treatment in industry,city and village wastewater-treatment plant. The impeller structure and reasonable rotating speed...The submerged propeller is an efficient diving mix device,which is applicable for oxidation ditch treatment in industry,city and village wastewater-treatment plant. The impeller structure and reasonable rotating speed are important factors that determine flow field distribution and energy conversion efficiency. So it is necessary to use modern design methods to develop new kinds of high efficiency submerged propellers,and research the flow field characteristics of submerged propellers. On the basis of the existing form drawing,three-dimensional model of submerged propellers and unstructured tetrahedral mesh were generated. Based on Navier- Stokes equations and standard k- ε turbulence model,the flow was simulated by using a simple algorithm. Through changing some design parameters of propellers,the corresponding numerical simulation results reveal that for the same impeller diameter and service area of submerged propellers,the power consumption could be reduced effectively by optimizing blade mounting angle,which can determine the best blade mounting angle and most suitable rotational speed under given conditions. The study can provide theoretical and project guidance for submerged propellers design.展开更多
This paper describes the design and development of a Semi-Automatic Precision Caliper System to measure the thickness of an outboard marine engine propeller blade.Several commonly used methods for measuring the thickn...This paper describes the design and development of a Semi-Automatic Precision Caliper System to measure the thickness of an outboard marine engine propeller blade.Several commonly used methods for measuring the thickness of a propeller blade are reviewed in this paper.These include the P rops Scan,3D Vision System and Black Dog.However,the operating practices and availability of different facilities in industry necessitate a more cost-effect ive approach.An alternative method using a Semi-Automatic Precision Caliper S ystem is therefore proposed.Details of the design criteria,principles of oper ation as well as the testing and verification of the system are presented.The paper concludes that the Semi-Automatic Precision Caliper System is a low cost and effective method for measuring the thickness of a propeller.展开更多
The flexible transmission shaft and wheel propeller are combined as the kinetic source equipment, which realizes the nmlti-motion modes of the autonomous underwater vehicle (AUV) such as vectored thruster and wheele...The flexible transmission shaft and wheel propeller are combined as the kinetic source equipment, which realizes the nmlti-motion modes of the autonomous underwater vehicle (AUV) such as vectored thruster and wheeled movement. In order to study the interactional principle between the hull and the wheel propellers while the AUV navigating in water, the computational fluid dynamics (CFD) method is used to simulate numerically the unsteady viscous flow around AUV with propellers by using the Reynolds-averaged Navier-Stokes (RANS) equations, shear-stress transport (SST) k-w model and pressure with splitting of operators (PISO) algorithm based on sliding mesh. The hydrodynamic parameters of AUV with propellers such as resistance, pressure and velocity are got, which reflect well the real ambient flow field of AUV with propellers. Then, the semi-implicit method for pressure-linked equations (SIMPLE) algorithm is used to compute the steady viscous flow field of AUV hull and propellers, respectively. The computational results agree well with the experimental data, which shows that the numerical method has good accuracy in the prediction of hydrodynamic performance. The interaction between AUV hull and wheel propellers is predicted qualitatively and quantitatively by comparing the hydrodynamic parameters such as resistance, pressure and velocity with those from integral computation and partial computation of the viscous flow around AUV with propellers, which provides an effective reference to the shady on noise and vibration of AUV hull and propellers in real environment. It also provides technical support for the design of new AUVs.展开更多
An energetic binder based on hydroxyl-terminated polybutadiene(HTPB),doped with different ratios of nitrocellulose(NC)(10%,20%,30%,and 50%),was developed to study the effect of NC doping on the thermal decomposition b...An energetic binder based on hydroxyl-terminated polybutadiene(HTPB),doped with different ratios of nitrocellulose(NC)(10%,20%,30%,and 50%),was developed to study the effect of NC doping on the thermal decomposition behavior of a composite propellant(CP)comprising ammonium nitrate(AN)as an oxidizer and magnesium(Mg)as a fuel.Optimization of the propellant formulation was conducted using Chemical Equilibrium with Applications-National Aeronautics and Space Administration(CEA-NASA)software,which demonstrated an increase in specific impulse by 12.09 s when the binder contained 50%NC.Fourier-transform infrared spectroscopy(FTIR)analysis confirmed the excellent compatibility between the components,and density measurements revealed an increase of 6.4%with a higher NC content.Morphological analysis using optical microscopy showed that NC doping improved the uniformity and compactness of the surface,reduced cavities,and achieved a more homogeneous particle distribution.Differential scanning calorimetry(DSC)analysis indicated a decrease in the decomposition temperature of the propellant as the NC content increased,while kinetic studies revealed a 48.68%reduction in the activation energy when 50%NC was incorporated into the binder.These findings suggest that the addition of NC enhances combustion efficiency and improves overall propellant performance.This study highlights the potential of the new HTPB-NC energetic binder as a promising approach for advancing solid propellant technology.展开更多
When older stocks of ammunition are fielded for use, propellant degradation may be of concern.Degraded propellants may result in either increased or decreased chamber pressures, depending on formulation(thus deviating...When older stocks of ammunition are fielded for use, propellant degradation may be of concern.Degraded propellants may result in either increased or decreased chamber pressures, depending on formulation(thus deviating from expected performance), or in the worst-case scenario, auto-ignition.Data is sparse regarding propellants aged naturally in manufactured ammunition. Propellant harvested from 1953 U S. military 30-06 M2 AP rifle cartridges and from 2012 U S. military M855A1 rifle cartridgs was evaluated using thermochemical techniques and field testing. Thermochemical results were also compared with two 2022-era ball propellants(Winchester 748 and Hodgdon BL-C(2)). Thermal analysis demonstrated similar energy densities between the 1953, 2012, and ca. 2022-era propellants,with minor changes in activation energy, suggesting slightly decreased propellant thermal stability in the1953 propellant. Chemical analysis supported this observation, with slightly decreased levels of stabilizer(still above accepted minimums) and increased levels of stabilizer byproducts in the 1953 propellant. For field testing, 0.223 Remington rifle cartridges were prepared for the 1953 and 2012 propellants utilizing the same match-grade components and a volume of the respective propellant to result in a muzzle velocity around 800 m/s. Accuracy characteristics and variation in projectile velocity were evaluated in a standardized competition course of fire. For each propellant, 20 rounds were shot from one bolt action rifle with a 1 in 8 inches twist, and 20 rounds were shot from another with a 1 in 7 inches twist. Results showed that the 1953-era propellant demonstrated comparable standard deviations in velocity and ontarget precision to the 2012-era propellant, and both resulted in comparable standard deviations in velocity and on-target performance to a modern extruded commercial reloading propellant.展开更多
Bonding quality at the interface of solid propellant grains is crucial for the reliability and safety of solid rocket motors.Although bonding reliability is influenced by numerous factors,the lack of quantitative char...Bonding quality at the interface of solid propellant grains is crucial for the reliability and safety of solid rocket motors.Although bonding reliability is influenced by numerous factors,the lack of quantitative characterization of interface debonding mechanisms and the challenge of identifying key factors have made precise control of process variables difficult,resulting in unpredictable failure risks.This paper presents an improved fuzzy failure probability evaluation method that combines fuzzy fault tree analysis with expert knowledge,transforming process data into fuzzy failure probability to accurately assess debonding probabilities.The predictive model is constructed through a general regression neural network and optimized using the particle swarm optimization algorithm.Sensitivity analysis is conducted to identify key decision variables,including normal force,grain rotation speed,and adhesive weight,which are verified experimentally.Compared with classical models,the maximum error margin of the constructed reliability prediction model is only 0.02%,and it has high stability.The experimental results indicate that the main factors affecting debonding are processing roughness and coating uniformity.Controlling the key decision variable as the median resulted in a maximum increase of 200.7%in bonding strength.The feasibility of the improved method has been verified,confirming that identifying key decision variables has the ability to improve bonding reliability.The proposed method simplifies the evaluation of propellant interface bonding reliability under complex conditions by quantifying the relationship between process parameters and failure risk,enabling targeted management of key decision variables.展开更多
This study represents an important step forward in the domain of additive manufacturing of energetic materials.It presents the successful formulation and fabrication by 3D printing of gun propellants using Fused Depos...This study represents an important step forward in the domain of additive manufacturing of energetic materials.It presents the successful formulation and fabrication by 3D printing of gun propellants using Fused Deposition Modeling(FDM)technology,highlighting the immense potential of this innovative approach.The use of FDM additive manufacturing technology to print gun propellants is a significant advancement due to its novel application in this field,which has not been previously reported.Through this study,the potential of FDM 3D-printing in the production of high-performance energetic composites is demonstrated,and also a new standard for manufacturability in this field can be established.The thermoplastic composites developed in this study are characterized by a notably high energetic solids content,comprising 70%hexogen(RDX)and 10%nitrocellulose(NC),which surpasses the conventional limit of 60%energetic solids typically achieved in stereolithography and light-curing 3D printing methods.The primary objective of the study was to optimize the formulation,enhance performance,and establish an equilibrium between printability and propellant efficacy.Among the three energetic for-mulations developed for 3D printing feedstock,only two were suitable for printing via the FDM tech-nique.Notably,the formulation consisting of 70%RDX,10%NC,and 20%polycaprolactone(PCL)emerged as the most advantageous option for gun propellants,owing to its exceptional processability,ease of printability,and high energetic performance.展开更多
Combustion catalyst is a key modifier for the performance of composite solid propellant.To exploit highefficiency combustion catalyst,a fascinating bimetallic metal-organic framework[MnCo(EIM)_(2)(DCA)_(2)]n(1)was con...Combustion catalyst is a key modifier for the performance of composite solid propellant.To exploit highefficiency combustion catalyst,a fascinating bimetallic metal-organic framework[MnCo(EIM)_(2)(DCA)_(2)]n(1)was constructed by an active dicyandiamide(DCA)linker,Mn^(2+),Co^(2+)centers,and an 1-ethylimidazole(EIM)ligand.1 possesses good thermal stability(Tp=205℃),high energy density(Eg=24.34 kJ/g,Ev=35.93 kJ/cm^(3)),and insensitivity to impact and frictional stimulus.The catalytic effects of 1 contrasted to monometallic coordination compounds Mn(EIM)_(4)(DCA)_(2)(2)and Co(EIM)_(4)(DCA)_(2)(3)on the thermal decomposition of AP/RDX composite were investigated by a DSC method.The decomposition peak temperatures of AP and RDX of the composite decreased to 335.8℃ and 206.4℃,respectively,and the corresponding activation energy decreased by 27.3%and 43.6%,respectively,which are better than the performances of monometallic complexes 2 and 3.The gas products in the whole thermal decomposition stage of the sample were measured by TG-MS and TG-IR,and the catalytic mechanism of 1 to AP/RDX was further analyzed.This work reveal potential application of bimetallic MOFs in the composite solid propellants.展开更多
The simultaneous integration of high energy density,low sensitivity,and thermal stability in energetic materials has constituted a century-long scientific challenge.Herein,we address this through a dualzwitterionic el...The simultaneous integration of high energy density,low sensitivity,and thermal stability in energetic materials has constituted a century-long scientific challenge.Herein,we address this through a dualzwitterionic electronic delocalization strategy,yielding TYX-3,the first bis-inner salt triazolo-tetrazine framework combining these mutually exclusive properties.Uniformπ-electron distribution and elevated bond dissociation energy confer exceptional thermal stability(T_(d)=365℃)with TATB-level insensitivity(impact sensitivity IS>40 J,friction sensitivity FS>360 N).Engineeredπ-stacked networks enable record density(1.99 g·cm^(-3))with detonation performance surpassing HMX benchmarks(detonation velocity 9315 m·s^(-1),detonation pressure 36.6 GPa).Practical implementation in Poly(3-nitratomethyl-3-methyloxetane)(PNMMFO)solid propellants demonstrates 5.4-fold safety enhancement over conventional HMX-based formulations while maintaining equivalent specific impulse.This work establishes a new design paradigm for energetic materials,overcoming the historical trade-offs between molecular stability and energy output through rational zwitterionic engineering.展开更多
With the development of high energy solid propellants,it is critical to evaluate the safety and power performance of solid propellants in the face of threats such as unmanned aerial vehicles(UAVs)when transporting and...With the development of high energy solid propellants,it is critical to evaluate the safety and power performance of solid propellants in the face of threats such as unmanned aerial vehicles(UAVs)when transporting and using them in contemporary warfare.An electric probe-type cylinder test measured the displacement-time behavior of NEPE high-energy solid propellant,and the parameters of the Jones-Wilkins-Lee(JWL)equation of state(EOS)were derived using particle swarm optimization(PSO)with the Gurney energy model.Further,the parameters of JWL-Miller EOS,determined through AUTODYN simulations,were validated by comparing airburst process simulations with experimental overpressure data.The study established a method for determining EOS parameters of high-energy propellants,achieving a high degree of accuracy.The derived parameters ensure precise modeling of propellant behavior,offering a reliable foundation for future applications in solid rocket motor performance optimization and safety assessment.展开更多
The reverse design of solid rocket motor(SRM)propellant grain involves determining the grain geometry to closely match a predefined internal ballistic curve.While existing reverse design methods are feasible,they ofte...The reverse design of solid rocket motor(SRM)propellant grain involves determining the grain geometry to closely match a predefined internal ballistic curve.While existing reverse design methods are feasible,they often face challenges such as lengthy computation times and limited accuracy.To achieve rapid and accurate matching between the targeted ballistic curve and complex grain shape,this paper proposes a novel reverse design method for SRM propellant grain based on time-series data imaging and convolutional neural network(CNN).First,a finocyl grain shape-internal ballistic curve dataset is created using parametric modeling techniques to comprehensively cover the design space.Next,the internal ballistic time-series data is encoded into three-channel images,establishing a potential relationship between the ballistic curves and their image representations.A CNN is then constructed and trained using these encoded images.Once trained,the model enables efficient inference of propellant grain dimensions from a target internal ballistic curve.This paper conducts comparative experiments across various neural network models,validating the effectiveness of the feature extraction method that transforms internal ballistic time-series data into images,as well as its generalization capability across different CNN architectures.Ignition tests were performed based on the predicted propellant grain.The results demonstrate that the relative error between the experimental internal ballistic curves and the target curves is less than 5%,confirming the validity and feasibility of the proposed reverse design methodology.展开更多
Fluorine containing oxidizers, primarily polymers, are extensively used in pyrotechnic compositions.Fluorinated oxidizers are less explored for metalized propellants and explosives despite a potential advantage of sub...Fluorine containing oxidizers, primarily polymers, are extensively used in pyrotechnic compositions.Fluorinated oxidizers are less explored for metalized propellants and explosives despite a potential advantage of substantial heat release combined with gaseous combustion products. This review summarizes different types of fluorinated oxidizers used in energetic formulations or of potential interest for such systems, including gases, polymers, and inorganic compounds. Types of energetic formulations employing metals and fluoropolymers are discussed in more detail, including methods used to prepare composites and resulting salient features of the obtained materials. Laboratory experiments characterizing such materials, in particular, electron microscopy and thermal analysis, are discussed, showing characteristic morphologies and reaction sequences observed in different metal-fluorinated oxidizer composites. Striking similarities are noted in reaction sequences for diverse compositions hinting at possible similarities in the respective reaction mechanisms. Experiments probing ignition and combustion of metal-fluorinated oxidizer composites in laboratory conditions are also reviewed, including impact, flash heating and shock ignition. Finally, some practical performance tests for energetic formulations are described following by a brief discussion of the reaction mechanisms expected to govern ignition and combustion in various metal-fluorinated oxidizer composites. The conclusions are combined with recommendation for future research in the area of reactive metal-fluorinated oxidizer composites.展开更多
基金The support of College of Energy and Electrical Engineering,Hohai University,ChinaNational Natural Science Foundation of China ( No.51106042)
文摘The submerged propeller is an efficient diving mix device,which is applicable for oxidation ditch treatment in industry,city and village wastewater-treatment plant. The impeller structure and reasonable rotating speed are important factors that determine flow field distribution and energy conversion efficiency. So it is necessary to use modern design methods to develop new kinds of high efficiency submerged propellers,and research the flow field characteristics of submerged propellers. On the basis of the existing form drawing,three-dimensional model of submerged propellers and unstructured tetrahedral mesh were generated. Based on Navier- Stokes equations and standard k- ε turbulence model,the flow was simulated by using a simple algorithm. Through changing some design parameters of propellers,the corresponding numerical simulation results reveal that for the same impeller diameter and service area of submerged propellers,the power consumption could be reduced effectively by optimizing blade mounting angle,which can determine the best blade mounting angle and most suitable rotational speed under given conditions. The study can provide theoretical and project guidance for submerged propellers design.
文摘This paper describes the design and development of a Semi-Automatic Precision Caliper System to measure the thickness of an outboard marine engine propeller blade.Several commonly used methods for measuring the thickness of a propeller blade are reviewed in this paper.These include the P rops Scan,3D Vision System and Black Dog.However,the operating practices and availability of different facilities in industry necessitate a more cost-effect ive approach.An alternative method using a Semi-Automatic Precision Caliper S ystem is therefore proposed.Details of the design criteria,principles of oper ation as well as the testing and verification of the system are presented.The paper concludes that the Semi-Automatic Precision Caliper System is a low cost and effective method for measuring the thickness of a propeller.
基金Project(2006AA09Z235) supported by National High Technology Research and Development Program of ChinaProject(CX2009B003) supported by Hunan Provincial Innovation Foundation For Postgraduate,China
文摘The flexible transmission shaft and wheel propeller are combined as the kinetic source equipment, which realizes the nmlti-motion modes of the autonomous underwater vehicle (AUV) such as vectored thruster and wheeled movement. In order to study the interactional principle between the hull and the wheel propellers while the AUV navigating in water, the computational fluid dynamics (CFD) method is used to simulate numerically the unsteady viscous flow around AUV with propellers by using the Reynolds-averaged Navier-Stokes (RANS) equations, shear-stress transport (SST) k-w model and pressure with splitting of operators (PISO) algorithm based on sliding mesh. The hydrodynamic parameters of AUV with propellers such as resistance, pressure and velocity are got, which reflect well the real ambient flow field of AUV with propellers. Then, the semi-implicit method for pressure-linked equations (SIMPLE) algorithm is used to compute the steady viscous flow field of AUV hull and propellers, respectively. The computational results agree well with the experimental data, which shows that the numerical method has good accuracy in the prediction of hydrodynamic performance. The interaction between AUV hull and wheel propellers is predicted qualitatively and quantitatively by comparing the hydrodynamic parameters such as resistance, pressure and velocity with those from integral computation and partial computation of the viscous flow around AUV with propellers, which provides an effective reference to the shady on noise and vibration of AUV hull and propellers in real environment. It also provides technical support for the design of new AUVs.
文摘An energetic binder based on hydroxyl-terminated polybutadiene(HTPB),doped with different ratios of nitrocellulose(NC)(10%,20%,30%,and 50%),was developed to study the effect of NC doping on the thermal decomposition behavior of a composite propellant(CP)comprising ammonium nitrate(AN)as an oxidizer and magnesium(Mg)as a fuel.Optimization of the propellant formulation was conducted using Chemical Equilibrium with Applications-National Aeronautics and Space Administration(CEA-NASA)software,which demonstrated an increase in specific impulse by 12.09 s when the binder contained 50%NC.Fourier-transform infrared spectroscopy(FTIR)analysis confirmed the excellent compatibility between the components,and density measurements revealed an increase of 6.4%with a higher NC content.Morphological analysis using optical microscopy showed that NC doping improved the uniformity and compactness of the surface,reduced cavities,and achieved a more homogeneous particle distribution.Differential scanning calorimetry(DSC)analysis indicated a decrease in the decomposition temperature of the propellant as the NC content increased,while kinetic studies revealed a 48.68%reduction in the activation energy when 50%NC was incorporated into the binder.These findings suggest that the addition of NC enhances combustion efficiency and improves overall propellant performance.This study highlights the potential of the new HTPB-NC energetic binder as a promising approach for advancing solid propellant technology.
文摘When older stocks of ammunition are fielded for use, propellant degradation may be of concern.Degraded propellants may result in either increased or decreased chamber pressures, depending on formulation(thus deviating from expected performance), or in the worst-case scenario, auto-ignition.Data is sparse regarding propellants aged naturally in manufactured ammunition. Propellant harvested from 1953 U S. military 30-06 M2 AP rifle cartridges and from 2012 U S. military M855A1 rifle cartridgs was evaluated using thermochemical techniques and field testing. Thermochemical results were also compared with two 2022-era ball propellants(Winchester 748 and Hodgdon BL-C(2)). Thermal analysis demonstrated similar energy densities between the 1953, 2012, and ca. 2022-era propellants,with minor changes in activation energy, suggesting slightly decreased propellant thermal stability in the1953 propellant. Chemical analysis supported this observation, with slightly decreased levels of stabilizer(still above accepted minimums) and increased levels of stabilizer byproducts in the 1953 propellant. For field testing, 0.223 Remington rifle cartridges were prepared for the 1953 and 2012 propellants utilizing the same match-grade components and a volume of the respective propellant to result in a muzzle velocity around 800 m/s. Accuracy characteristics and variation in projectile velocity were evaluated in a standardized competition course of fire. For each propellant, 20 rounds were shot from one bolt action rifle with a 1 in 8 inches twist, and 20 rounds were shot from another with a 1 in 7 inches twist. Results showed that the 1953-era propellant demonstrated comparable standard deviations in velocity and ontarget precision to the 2012-era propellant, and both resulted in comparable standard deviations in velocity and on-target performance to a modern extruded commercial reloading propellant.
基金supported in part by the Equipment Development Pre-research Project funded by Equipment Development Department,PRC under Grant No.50923010501Fundamental Research Program of Shenyang Institute of Automation(SIA),Chinese Academy of Sciencess under Grant No.355060201。
文摘Bonding quality at the interface of solid propellant grains is crucial for the reliability and safety of solid rocket motors.Although bonding reliability is influenced by numerous factors,the lack of quantitative characterization of interface debonding mechanisms and the challenge of identifying key factors have made precise control of process variables difficult,resulting in unpredictable failure risks.This paper presents an improved fuzzy failure probability evaluation method that combines fuzzy fault tree analysis with expert knowledge,transforming process data into fuzzy failure probability to accurately assess debonding probabilities.The predictive model is constructed through a general regression neural network and optimized using the particle swarm optimization algorithm.Sensitivity analysis is conducted to identify key decision variables,including normal force,grain rotation speed,and adhesive weight,which are verified experimentally.Compared with classical models,the maximum error margin of the constructed reliability prediction model is only 0.02%,and it has high stability.The experimental results indicate that the main factors affecting debonding are processing roughness and coating uniformity.Controlling the key decision variable as the median resulted in a maximum increase of 200.7%in bonding strength.The feasibility of the improved method has been verified,confirming that identifying key decision variables has the ability to improve bonding reliability.The proposed method simplifies the evaluation of propellant interface bonding reliability under complex conditions by quantifying the relationship between process parameters and failure risk,enabling targeted management of key decision variables.
基金supported by a grant from the Ministry of Research, Innovation and Digitization, UEFISCDI, Grant Nos. PN-IIIP2-2.1-PED-2021-1890, PN-IV-P6-6.3-SOL-2024-2-0254 and PNIV-P7-7.1-PTE-2024-0517, within PNCDI Ⅳ.
文摘This study represents an important step forward in the domain of additive manufacturing of energetic materials.It presents the successful formulation and fabrication by 3D printing of gun propellants using Fused Deposition Modeling(FDM)technology,highlighting the immense potential of this innovative approach.The use of FDM additive manufacturing technology to print gun propellants is a significant advancement due to its novel application in this field,which has not been previously reported.Through this study,the potential of FDM 3D-printing in the production of high-performance energetic composites is demonstrated,and also a new standard for manufacturability in this field can be established.The thermoplastic composites developed in this study are characterized by a notably high energetic solids content,comprising 70%hexogen(RDX)and 10%nitrocellulose(NC),which surpasses the conventional limit of 60%energetic solids typically achieved in stereolithography and light-curing 3D printing methods.The primary objective of the study was to optimize the formulation,enhance performance,and establish an equilibrium between printability and propellant efficacy.Among the three energetic for-mulations developed for 3D printing feedstock,only two were suitable for printing via the FDM tech-nique.Notably,the formulation consisting of 70%RDX,10%NC,and 20%polycaprolactone(PCL)emerged as the most advantageous option for gun propellants,owing to its exceptional processability,ease of printability,and high energetic performance.
基金supported by the National Natural Science Foundation of China(Grant No.22175025)State Key Laboratory of Explosion Science and Safety Protection(Grant No.YBKT22-03)+1 种基金the Natural Science Foundation of Chongqing(Grant No.CSTB2023 NSCQ-LZX0098)the Chongqing Municipal Education Commis-sion(Grant No.KJZD-M202301404).
文摘Combustion catalyst is a key modifier for the performance of composite solid propellant.To exploit highefficiency combustion catalyst,a fascinating bimetallic metal-organic framework[MnCo(EIM)_(2)(DCA)_(2)]n(1)was constructed by an active dicyandiamide(DCA)linker,Mn^(2+),Co^(2+)centers,and an 1-ethylimidazole(EIM)ligand.1 possesses good thermal stability(Tp=205℃),high energy density(Eg=24.34 kJ/g,Ev=35.93 kJ/cm^(3)),and insensitivity to impact and frictional stimulus.The catalytic effects of 1 contrasted to monometallic coordination compounds Mn(EIM)_(4)(DCA)_(2)(2)and Co(EIM)_(4)(DCA)_(2)(3)on the thermal decomposition of AP/RDX composite were investigated by a DSC method.The decomposition peak temperatures of AP and RDX of the composite decreased to 335.8℃ and 206.4℃,respectively,and the corresponding activation energy decreased by 27.3%and 43.6%,respectively,which are better than the performances of monometallic complexes 2 and 3.The gas products in the whole thermal decomposition stage of the sample were measured by TG-MS and TG-IR,and the catalytic mechanism of 1 to AP/RDX was further analyzed.This work reveal potential application of bimetallic MOFs in the composite solid propellants.
基金supported by the National Natural Science Foundation of China(Grant Nos.22105156,22175139,22171136,and 22302156)the China National Science Fund for Distinguished Young Scholars(Grant No.22325504)。
文摘The simultaneous integration of high energy density,low sensitivity,and thermal stability in energetic materials has constituted a century-long scientific challenge.Herein,we address this through a dualzwitterionic electronic delocalization strategy,yielding TYX-3,the first bis-inner salt triazolo-tetrazine framework combining these mutually exclusive properties.Uniformπ-electron distribution and elevated bond dissociation energy confer exceptional thermal stability(T_(d)=365℃)with TATB-level insensitivity(impact sensitivity IS>40 J,friction sensitivity FS>360 N).Engineeredπ-stacked networks enable record density(1.99 g·cm^(-3))with detonation performance surpassing HMX benchmarks(detonation velocity 9315 m·s^(-1),detonation pressure 36.6 GPa).Practical implementation in Poly(3-nitratomethyl-3-methyloxetane)(PNMMFO)solid propellants demonstrates 5.4-fold safety enhancement over conventional HMX-based formulations while maintaining equivalent specific impulse.This work establishes a new design paradigm for energetic materials,overcoming the historical trade-offs between molecular stability and energy output through rational zwitterionic engineering.
基金supported by"the Fundamental Research Funds for the Central Universities",No.30924010503.
文摘With the development of high energy solid propellants,it is critical to evaluate the safety and power performance of solid propellants in the face of threats such as unmanned aerial vehicles(UAVs)when transporting and using them in contemporary warfare.An electric probe-type cylinder test measured the displacement-time behavior of NEPE high-energy solid propellant,and the parameters of the Jones-Wilkins-Lee(JWL)equation of state(EOS)were derived using particle swarm optimization(PSO)with the Gurney energy model.Further,the parameters of JWL-Miller EOS,determined through AUTODYN simulations,were validated by comparing airburst process simulations with experimental overpressure data.The study established a method for determining EOS parameters of high-energy propellants,achieving a high degree of accuracy.The derived parameters ensure precise modeling of propellant behavior,offering a reliable foundation for future applications in solid rocket motor performance optimization and safety assessment.
文摘The reverse design of solid rocket motor(SRM)propellant grain involves determining the grain geometry to closely match a predefined internal ballistic curve.While existing reverse design methods are feasible,they often face challenges such as lengthy computation times and limited accuracy.To achieve rapid and accurate matching between the targeted ballistic curve and complex grain shape,this paper proposes a novel reverse design method for SRM propellant grain based on time-series data imaging and convolutional neural network(CNN).First,a finocyl grain shape-internal ballistic curve dataset is created using parametric modeling techniques to comprehensively cover the design space.Next,the internal ballistic time-series data is encoded into three-channel images,establishing a potential relationship between the ballistic curves and their image representations.A CNN is then constructed and trained using these encoded images.Once trained,the model enables efficient inference of propellant grain dimensions from a target internal ballistic curve.This paper conducts comparative experiments across various neural network models,validating the effectiveness of the feature extraction method that transforms internal ballistic time-series data into images,as well as its generalization capability across different CNN architectures.Ignition tests were performed based on the predicted propellant grain.The results demonstrate that the relative error between the experimental internal ballistic curves and the target curves is less than 5%,confirming the validity and feasibility of the proposed reverse design methodology.
基金supported in parts by Defense Threat Reduction Agency(HDTRAl-15-1-00240)Air Force Office of Scientific Research(FA9550-16-1-0266)
文摘Fluorine containing oxidizers, primarily polymers, are extensively used in pyrotechnic compositions.Fluorinated oxidizers are less explored for metalized propellants and explosives despite a potential advantage of substantial heat release combined with gaseous combustion products. This review summarizes different types of fluorinated oxidizers used in energetic formulations or of potential interest for such systems, including gases, polymers, and inorganic compounds. Types of energetic formulations employing metals and fluoropolymers are discussed in more detail, including methods used to prepare composites and resulting salient features of the obtained materials. Laboratory experiments characterizing such materials, in particular, electron microscopy and thermal analysis, are discussed, showing characteristic morphologies and reaction sequences observed in different metal-fluorinated oxidizer composites. Striking similarities are noted in reaction sequences for diverse compositions hinting at possible similarities in the respective reaction mechanisms. Experiments probing ignition and combustion of metal-fluorinated oxidizer composites in laboratory conditions are also reviewed, including impact, flash heating and shock ignition. Finally, some practical performance tests for energetic formulations are described following by a brief discussion of the reaction mechanisms expected to govern ignition and combustion in various metal-fluorinated oxidizer composites. The conclusions are combined with recommendation for future research in the area of reactive metal-fluorinated oxidizer composites.