期刊文献+
共找到2,329篇文章
< 1 2 117 >
每页显示 20 50 100
基于改进OpenPose网络的交通警察姿态估计 被引量:1
1
作者 伍锡如 陈麒 《计算机应用与软件》 北大核心 2025年第1期90-95,101,共7页
针对交警姿态估计存在的特征提取困难、实时性差等问题,提出一种改进的OpenPose网络交警姿态估计方法。采用MobileNet作为主干网络进行交警姿态的特征提取,解决模型随层次加深导致网络退化的问题,减少网络的参数量,加速主干网络内部特... 针对交警姿态估计存在的特征提取困难、实时性差等问题,提出一种改进的OpenPose网络交警姿态估计方法。采用MobileNet作为主干网络进行交警姿态的特征提取,解决模型随层次加深导致网络退化的问题,减少网络的参数量,加速主干网络内部特征的计算。通过跳跃连接机制将模型并行结构改进为串并同行结构,实现网络内部参数共享,降低模型的复杂度,提高检测实时性。实验结果表明,改进模型在COCO数据集以及公开交警数据集上分别获得78.9%和74.9%的mAP,检测速度可达25帧/s,为交通警察姿态估计问题提供了一种鲁棒性强、实时性高的实际应用方法。 展开更多
关键词 深度学习 交通警察姿态估计 Openpose MobileNet
在线阅读 下载PDF
基于改进YOLOv8n-pose和BoTSORT的鱼苗应激行为监测
2
作者 冯国富 袁林婧 +1 位作者 王文娟 陈明 《渔业现代化》 北大核心 2025年第4期31-43,共13页
准确高效监测鱼苗应激行为不仅有助于在养殖过程中调控应激源以减少产量损失,同时也可为育种阶段的鱼苗活力评估提供有效手段。针对鱼苗体积小、养殖密度高和高速非线性运动的特点,提出一种改进YOLOv8n-pose和BoTSORT的鱼苗应激行为监... 准确高效监测鱼苗应激行为不仅有助于在养殖过程中调控应激源以减少产量损失,同时也可为育种阶段的鱼苗活力评估提供有效手段。针对鱼苗体积小、养殖密度高和高速非线性运动的特点,提出一种改进YOLOv8n-pose和BoTSORT的鱼苗应激行为监测方法。改进YOLOv8n-pose作为检测器,将BMS模块与C2f模块相结合,使模型充分学习不同尺度特征;使用SPPCSPC模块替换原模型的特征融合模块,优化鱼苗相互遮挡情形下的检测精度;最后用NEMASlideLoss替换原模型损失函数,增强模型的稳定性和对小目标的关注度。在跟踪器部分,基于检测器检测出的目标,结合BoTSORT多目标跟踪算法实现了更适合鱼苗应激时非线性运动监测的方法。最后,提取鱼苗的加速度、摆尾角度和聚集度3种特征进行加权融合,根据融合后的特征值判断鱼苗是否处于应激状态。结果显示,改进后的YOLOv8n-pose算法在目标检测和关键点检测的mAP比原模型分别提高了3.6%和4.5%;BoTSORT算法的MOTA为77.628%、MOTP为80.307%、IDF1为79.573%、IDSW为51,优于DeepSORT、ByteTrack、StrongSORT算法。该研究算法基于特征值的应激行为监测准确率为95.24%,为鱼类苗种培育中应激行为监测提供了新的思路和方法。 展开更多
关键词 鱼苗 YOLOv8n-pose BoTSORT 应激行为监测
在线阅读 下载PDF
基于改进YOLO v5-pose的群养生猪体尺自动测量方法
3
作者 刘刚 曾雪婷 +3 位作者 刘晓文 李涛 丁向东 米阳 《农业机械学报》 北大核心 2025年第5期455-465,共11页
针对群养生猪体尺自动测量中体尺测点难以高效和精确提取的问题,提出一种基于改进YOLO v5-pose的群养生猪体尺自动测量方法。在YOLO v5-pose主干网络中融合卷积块注意力模块(Convolutional block attention module,CBAM),更好地捕捉到... 针对群养生猪体尺自动测量中体尺测点难以高效和精确提取的问题,提出一种基于改进YOLO v5-pose的群养生猪体尺自动测量方法。在YOLO v5-pose主干网络中融合卷积块注意力模块(Convolutional block attention module,CBAM),更好地捕捉到测点相关特征;将Neck层的C3传统模块替换为C3Ghost轻量模块,降低模型参数量和内存占用量;在模型Head层引入DyHead(Dynamic head)目标检测头,提升模型对测点位置的表征能力。结果表明,改进模型的测点检测平均精度均值为92.6%,参数量为6.890×10^(6),内存占用量为14.1 MB,与原始YOLO v5-pose模型相比,平均精度均值增加2.1个百分点,参数量和内存占用量分别减少2.380×10^(5)、0.4 MB。与当前经典模型YOLO v7-pose、YOLO v8-pose、RTMPose(Real-time multi-person pose estimation based on mmpose)和CenterNet相比,该模型的召回率和平均精度均值更优且更轻量化。在2400幅群养生猪图像数据集上进行试验,结果表明,该方法测得体长、体宽、臀宽、体高和臀高的平均绝对误差分别为4.61、5.87、6.03、0.49、0.46 cm,平均相对误差分别为2.69%、11.53%、12.29%、0.90%和0.76%。综上所述,本文方法提高了体尺测点检测精度,降低了模型复杂度,取得了更精确的体尺测量结果,为群养环境下生猪体尺自动测量提供了一种有效的技术手段。 展开更多
关键词 群养生猪 体尺测量 改进YOLO v5-pose 关键点检测 坐标变换
在线阅读 下载PDF
基于BMR-YOLO 11n-Pose的藠头关键点识别与分类方法
4
作者 刘浩蓬 杨云潇 +3 位作者 康启新 张国忠 张乐妍 卫佳 《农业机械学报》 北大核心 2025年第11期490-498,共9页
针对藠头形态不规则,在检测过程中存在特征表达失真、外形难以提取等问题,本文提出基于深度学习的多尺度关键点识别与分类方法,可通过识别藠头顶点及横径的两端点提取其外形特征,同时基于决策树算法对藠头尺寸和外形等特征进行准确分类... 针对藠头形态不规则,在检测过程中存在特征表达失真、外形难以提取等问题,本文提出基于深度学习的多尺度关键点识别与分类方法,可通过识别藠头顶点及横径的两端点提取其外形特征,同时基于决策树算法对藠头尺寸和外形等特征进行准确分类。首先以YOLO 11n-Pose为基线模型,在颈部引入双层路由注意力机制(BRA)、特征增强层(MobileNet Variants)和通道混洗的重参数化卷积(RCS),构建了BMR-YOLO 11n-Pose模型。相较于基线模型,本文模型的关键点识别精确率(Pose-P)和检测框识别精确率(Box-P)分别提升0.9、1.9个百分点,其平均精度mAP0.5-0.95提升1.9个百分点。进而基于决策树算法对藠头的外形特征分别进行尺寸分类和弯曲程度分类,其分类模型精确率分别为92.87%和84.72%,相比原基线模型分别增加11.19、8.39个百分点,有效提升了藠头外形特征的分类精度。本研究可为藠头位姿识别和分类作业等应用场景提供理论参考和技术支撑。 展开更多
关键词 藠头识别 目标关键点检测 BMR-YOLO 11n-pose 深度学习
在线阅读 下载PDF
基于改进YOLO v9u-pose的肉牛质量估算方法
5
作者 段青玲 杨丽莎 《农业机械学报》 北大核心 2025年第10期596-605,共10页
在肉牛养殖中,肉牛质量对其生长监测和育种改良具有重要意义。传统的称量方法费时费力,且易造成牛只应激反应。然而,现有的非接触方法易受姿态和复杂背景影响,精度较低,鲁棒性差。为此,本文提出了基于改进YOLO v9u-pose的肉牛质量估算方... 在肉牛养殖中,肉牛质量对其生长监测和育种改良具有重要意义。传统的称量方法费时费力,且易造成牛只应激反应。然而,现有的非接触方法易受姿态和复杂背景影响,精度较低,鲁棒性差。为此,本文提出了基于改进YOLO v9u-pose的肉牛质量估算方法,包括关键点检测和质量估算2个阶段。在关键点检测阶段,以YOLO v9u-pose作为基线网络,利用ODConv(Omni-dimensional dynamic convolution)替换主干网络的普通卷积;采用DySample替换颈部网络的上采样模块;并在与检测头连接的RepNCSPELAN4模块中添加EMA注意力机制(Excitation and modulation attention),进而提高肉牛关键点检测算法精度。在质量估算阶段,利用深度图和局部点云聚类等方法提取体尺特征,并构建基于体尺和PSO-XGBoost(Particle swarm optimization-eXtreme gradient boosting, PSO-XGBoost)的肉牛质量估算算法。在自建的数据集上测试,本文提出的关键点检测算法F1值和平均精度均值(mAP@0.75)分别为97.2%和98.2%,质量估算算法平均绝对百分比误差为3.97%。最终将所提方法部署至开发板,为肉牛智能化养殖提供了技术支持。 展开更多
关键词 肉牛 质量估算 关键点检测 YOLO v9u-pose PSO-XGBoost
在线阅读 下载PDF
改进YOLOv8s-Pose多人姿态估计轻量化模型研究 被引量:3
6
作者 傅裕 高树辉 《计算机科学与探索》 北大核心 2025年第3期682-692,共11页
针对现有人体姿态估计模型计算量大、检测速度慢等问题,提出了一种基于YOLOv8s-Pose模型的轻量化改进算法。在backbone中引入轻量化模块C2f-GhostNetBottleNeckV2替换原先C2f,减少参数量,提高模型速度。引入Non_Local注意力机制捕捉并... 针对现有人体姿态估计模型计算量大、检测速度慢等问题,提出了一种基于YOLOv8s-Pose模型的轻量化改进算法。在backbone中引入轻量化模块C2f-GhostNetBottleNeckV2替换原先C2f,减少参数量,提高模型速度。引入Non_Local注意力机制捕捉并传递人体关键点位置,直接融合全面的信息,为后续的层级提供更为丰富和深入的语义信息,提升整体的信息处理深度和广度,强化特征提取的效能,减少模型轻量化后精度降低问题,再将neck层引入加权双向特征金字塔网络,通过双向融合的理念,对自顶向下和自底向上的信息流动路径进行了重新规划,确保在处理不同尺度的特征信息时达到良好的平衡,给网络增加一个小目标检测头,减少对小目标的漏检情况,将CIOU损失函数更换为Focal-EIOU损失函数,以增强对复杂场景和多目标场景下的鲁棒性。实验结果表明,改进后的实验模型参数量降低了9.3%,在COCO2017人体关键点数据集上,与原模型相比mAP@0.50提升了0.4个百分点,mAP@0.50:0.95提升了0.6个百分点。可见,所提出的轻量化改进算法在减少模型参数量的同时,提升了人体姿态估计的算法精度,尤其对小目标检测有显著改善,为实现实时准确的姿态估计提供了有效手段。 展开更多
关键词 姿态估计 YOLOv8s-pose GhostNetV2网络 加权双向特征金字塔网络 损失函数
在线阅读 下载PDF
基于YOLOv8-pose的人体姿态检测模型 被引量:1
7
作者 方晓柯 黄俊 《激光杂志》 北大核心 2025年第3期50-57,共8页
针对多人人体姿态估计场景下关节点检测丢失以及小目标无法识别等问题,提出了一种改进的YOLOv8-Pose模型。该算法的核心改进在于使用可变性卷积DCNV2替换了C2F模块中的卷积,从而增强了网络的特征提取能力。同时,使用加权双向金字塔BiFP... 针对多人人体姿态估计场景下关节点检测丢失以及小目标无法识别等问题,提出了一种改进的YOLOv8-Pose模型。该算法的核心改进在于使用可变性卷积DCNV2替换了C2F模块中的卷积,从而增强了网络的特征提取能力。同时,使用加权双向金字塔BiFPN模块替换原模型中的特征融合模块,保留小目标信息的同时,融合更多的浅层信息,以提高识别准确度。最后,为了进一步加强对关键部位的捕获和分析能力,引入了SimAM注意力机制,对局部特征进行加权处理。实验结果表明,在CrowdPose数据集上,该算法的检测精度达到了74.5%,比原模型高出了3.3%。与原YOLOv8-pose模型相比,改进后的模型不仅具有更高的检测精度,而且在小目标的识别效果上也有显著的提升。由此可见,改进后的网络能更加精确、有效地应用于多人人体姿态检测。 展开更多
关键词 姿态识别 关节点检测 YOLOv8-pose DCNV2 SimAM
在线阅读 下载PDF
基于改进YOLOv8n-Pose的疲劳驾驶检测 被引量:1
8
作者 蔡忠祺 林珊玲 +3 位作者 林坚普 吕珊红 林志贤 郭太良 《液晶与显示》 北大核心 2025年第4期617-629,共13页
针对目前驾驶员疲劳检测算法存在检测过程复杂、参数多、精度低、运行速度慢等问题,提出了一种基于改进YOLOv8n-Pose的轻量级模型。该模型优化了YOLOv8n-Pose的结构。首先,在模型主干网络中,引入Ghost卷积减少模型参数量和不必要的卷积... 针对目前驾驶员疲劳检测算法存在检测过程复杂、参数多、精度低、运行速度慢等问题,提出了一种基于改进YOLOv8n-Pose的轻量级模型。该模型优化了YOLOv8n-Pose的结构。首先,在模型主干网络中,引入Ghost卷积减少模型参数量和不必要的卷积计算。其次,引入Slim-neck融合主干网络提取的不同尺寸特征,加速网络预测计算。同时在颈部网络添加遮挡感知注意力模块(SEAM),强调图像中的人脸区域并弱化背景,改善关键点定位效果。最后,在检测头部分提出一种GNSC-Head结构,引入共享卷积,并将传统卷积的BN层优化成更稳定的GN层,有效节省模型的参数空间和计算资源。实验结果显示,改进后的YOLOv8n-Pose相较于原始算法,mAP@0.5提高了0.9%,参数量和计算量各减少了50%,同时FPS提高了8%,最终的疲劳驾驶识别率达到93.5%。经验证,本文算法在轻量化的同时能够保持较高的检测精度,并且能够有效识别驾驶员状态,为车辆边缘设备的部署提供有力支撑。 展开更多
关键词 疲劳驾驶检测 深度学习 YOLOv8n-pose 轻量化 注意力机制
在线阅读 下载PDF
基于改进YOLOv8n-Pose的羊只围产期行为识别方法
9
作者 孙思晗 孙小华 +2 位作者 王超 袁万哲 王福顺 《农业工程学报》 北大核心 2025年第12期258-268,共11页
在现代畜牧业中,自动化识别羊只围产期行为能及时发现潜在的健康问题和生产异常,从而有效保障羊只健康、降低出生羊羔死亡率、提升繁殖效益。针对羊只围产期部分行为特征的高度相似以及羊只生产环境中存在复杂光照条件和背景干扰等问题... 在现代畜牧业中,自动化识别羊只围产期行为能及时发现潜在的健康问题和生产异常,从而有效保障羊只健康、降低出生羊羔死亡率、提升繁殖效益。针对羊只围产期部分行为特征的高度相似以及羊只生产环境中存在复杂光照条件和背景干扰等问题,该研究提出了一种改进YOLOv8n-Pose关键点检测模型与BP神经网络相结合的羊只围产期行为识别方法。首先,为提升关键点检测的精度,新增P2检测层,显著增强模型对小尺度特征的捕获能力,为复杂行为的关键点定位提供更精细的支持。其次,针对复杂环境中的特征表达问题,引入多尺度注意力模块(multi-scale attention block,MAB),以动态权重机制强化模型对全局与局部特征的交互建模能力,提升在复杂光照环境下的稳健性和泛化性能。此外,考虑到模型参数量较大导致部署困难,采用基于L1范数的剪枝策略,对优化后的模型进行参数压缩与冗余移除,既有效降低了计算复杂度,又保证了高效性与模型性能的平衡。最后,基于改进模型精准提取12个关键点坐标信息后,结合5个关节角度、2对关键点相对位置以及关键点识别个数,构建包含32个行为特征向量的多维数据集,并将其作为输入传递至BP神经网络进行羊只围产期行为分类。试验结果表明,在自建羊只围产期数据集上,改进的YOLOv8n-Pose模型检测羊只关键点较原模型平均精度值mAP50提升4.6个百分点,m AP50:95提升6.7个百分点。BP神经网络对羊只围产期行为进行分类,其F1分数达到95.7%。研究结果验证基于关键点的识别方法在复杂的围产期行为识别中具有明显优势,为畜牧业智能化管理提供有效的技术支持。 展开更多
关键词 行为识别 YOLOv8n-pose 关键点检测 围产期 BP神经网络
在线阅读 下载PDF
融合轻量化YOLOv8-Pose的烟草茎叶角检测算法
10
作者 高坤 李军营 +2 位作者 梁虹 马二登 张宏 《电子测量技术》 北大核心 2025年第13期84-95,共12页
茎叶角检测是烟草表型检测的重要部分,在烟草农业的增产增效和疾病预防方面有重要的意义。针对不同环境下的人工茎叶角检测效率低、周期长、检测不方便等问题,设计并构建了轻量化的烟草茎叶角检测模型FAL-YOLO。该算法构建FAI主干网络... 茎叶角检测是烟草表型检测的重要部分,在烟草农业的增产增效和疾病预防方面有重要的意义。针对不同环境下的人工茎叶角检测效率低、周期长、检测不方便等问题,设计并构建了轻量化的烟草茎叶角检测模型FAL-YOLO。该算法构建FAI主干网络结构来充分减少计算量和特征冗余,增加语义信息的利用效率。构建了融合空间注意力和通道注意力SA注意力模块的SAC检测头模块,进一步减少参数量和增强对茎叶角特征的感知能力。引入GSConv轻量化卷积降低模型复杂度和模型参数量。引入MPD-IoU损失函数来提升改进模型整体性能。采用自建的烟草茎叶角检测数据集,开展FAL-YOLO模型的对比和消融实验。实验结果表明,FAL-YOLO模型在自制数据集上的mAP达到了99.2%,相比YOLOV8-POSE模型在GFLOPs,Params分别降低了56.7%和52%,改进后的模型能够更快更精准的识别烟草植株茎叶角,为烟草农业选种育种智慧化提供支持。 展开更多
关键词 烟草茎叶角检测 主干网络 轻量化 金字塔池化 YOLOv8-pose
在线阅读 下载PDF
基于改进YOLOv8n-pose的轻量化牛体尺自动测量方法
11
作者 陈相学 郭小燕 +1 位作者 李艳梅 刘畅 《南京农业大学学报》 北大核心 2025年第6期1464-1475,共12页
[目的]牛体尺测量是牛生长发育评估和育种选择的重要步骤。然而传统的人工测量牛体尺的方法费时费力,且容易引起牛的应激反应。为了准确高效、低成本地测量牛育种所需的体尺数据,本研究设计了一种轻量化牛体尺自动测量方法。[方法]基于... [目的]牛体尺测量是牛生长发育评估和育种选择的重要步骤。然而传统的人工测量牛体尺的方法费时费力,且容易引起牛的应激反应。为了准确高效、低成本地测量牛育种所需的体尺数据,本研究设计了一种轻量化牛体尺自动测量方法。[方法]基于牛侧面体尺数据集,提出了一种基于改进YOLOv8n-pose的关键点检测模型,在原基础上引入空间深度转换卷积(space-to-depth convolution,SPD-Conv)模块、CSPPC(cross-stage partial networks and partial convolution)模块和SPPELAN(spatial pyramid pyramid ensemble for lightweight networks)池化模块。利用改进模型自动获取牛身体的鬐甲最高点、前肢地面点、胸基点、鬐甲后缘点、腹底点、腰椎点、十字部点、肩端前缘点、坐骨结节后缘点、前肢左点和前肢右点11个关键点位置。根据坐标转换与体尺公式自动测量出体高、胸深、腹深、十字部高、尻长、体斜长和管围7项牛体尺数据。[结果]在采集的61头牛体尺数据集上进行试验,试验结果表明本文提出的改进模型测量出的牛体尺数据平均相对误差为6.2%,与原模型相比,参数量降低43.8%,计算量下降34.1%,模型尺寸降低41.3%,在保证模型精度的同时提高了轻量化程度。[结论]本研究满足了准确高效、全面与低成本的自动测量牛体尺要求,为牛选育提供了一种新的有效测量方案。 展开更多
关键词 牛体尺测量 牛选育 关键点检测 轻量化模型 YOLOv8n-pose
在线阅读 下载PDF
基于YOLOv8n-Pose关键点特征增强估计算法
12
作者 殷贤涛 胡波 李思照 《无线电通信技术》 北大核心 2025年第5期1025-1035,共11页
现有关键点检测算法在光照变化、人员密集交叉遮挡等情况下,易导致检测精度降低、漏检或关键点检测错位的问题。针对该问题,提出基于YOLOv8n-Pose改进的LBW-YOLOv8n-Pose复杂环境多人人体姿态估计算法。通过在特征提取主干网络的快速空... 现有关键点检测算法在光照变化、人员密集交叉遮挡等情况下,易导致检测精度降低、漏检或关键点检测错位的问题。针对该问题,提出基于YOLOv8n-Pose改进的LBW-YOLOv8n-Pose复杂环境多人人体姿态估计算法。通过在特征提取主干网络的快速空间金字塔池化(Spatial Pyramid Pooling-Fast,SPPF)层引入大核可分离注意力(Large Separable Kernel Attention,LSKA),增强图像特征表达能力和感知能力。在颈部网络引入加权双向特征金字塔网络(Bidirectional Feature Pyramid Network,BiFPN)进行重构,提高多尺度特征融合效果,并采用改进的Wise-IoU损失函数,提升模型收敛速度与复杂场景下的鲁棒性。实验结果表明,改进后模型在MS-COCO2017人体关键点数据集上精确率、召回率、平均精度值分别达到85.7%、76.8%、81.7%,相比原模型均有明显提升,且能更精准、有效地检测复杂情况下多人人体关键点信息。 展开更多
关键词 姿态估计 注意力机制 YOLOv8n-pose
在线阅读 下载PDF
High-Precision Fish Pose Estimation Method Based on Improved HRNet
13
作者 PENG Qiujun LI Weiran +1 位作者 LIU Yeqiang LI Zhenbo 《智慧农业(中英文)》 2025年第3期160-172,共13页
[Objective]Fish pose estimation(FPE)provides fish physiological information,facilitating health monitoring in aquaculture.It aids decision-making in areas such as fish behavior recognition.When fish are injured or def... [Objective]Fish pose estimation(FPE)provides fish physiological information,facilitating health monitoring in aquaculture.It aids decision-making in areas such as fish behavior recognition.When fish are injured or deficient,they often display abnormal behaviors and noticeable changes in the positioning of their body parts.Moreover,the unpredictable posture and orientation of fish during swimming,combined with the rapid swimming speed of fish,restrict the current scope of research in FPE.In this research,a FPE model named HPFPE is presented to capture the swimming posture of fish and accurately detect their key points.[Methods]On the one hand,this model incorporated the CBAM module into the HRNet framework.The attention module enhanced accuracy without adding computational complexity,while effectively capturing a broader range of contextual information.On the other hand,the model incorporated dilated convolution to increase the receptive field,allowing it to capture more spatial context.[Results and Discussions]Experiments showed that compared with the baseline method,the average precision(AP)of HPFPE based on different backbones and input sizes on the oplegnathus punctatus datasets had increased by 0.62,1.35,1.76,and 1.28 percent point,respectively,while the average recall(AR)had also increased by 0.85,1.50,1.40,and 1.00,respectively.Additionally,HPFPE outperformed other mainstream methods,including DeepPose,CPM,SCNet,and Lite-HRNet.Furthermore,when compared to other methods using the ornamental fish data,HPFPE achieved the highest AP and AR values of 52.96%,and 59.50%,respectively.[Conclusions]The proposed HPFPE can accurately estimate fish posture and assess their swimming patterns,serving as a valuable reference for applications such as fish behavior recognition. 展开更多
关键词 AQUACULTURE computer vision fish pose estimation key point attention mechanism
在线阅读 下载PDF
POSE中乐观同步策略研究 被引量:2
14
作者 方建滨 车永刚 +1 位作者 翁玉芬 王正华 《计算机工程与应用》 CSCD 北大核心 2009年第21期142-146,共5页
同步策略是并行离散事件模拟的关键技术之一。POSE是一种面向对象的可扩展的计算机体系结构并行模拟框架,可进行大规模系统的并行模拟。剖析了POSE框架中的乐观同步策略,按照时间窗口调整状况将其自适应策略分为半自适应策略和完全自适... 同步策略是并行离散事件模拟的关键技术之一。POSE是一种面向对象的可扩展的计算机体系结构并行模拟框架,可进行大规模系统的并行模拟。剖析了POSE框架中的乐观同步策略,按照时间窗口调整状况将其自适应策略分为半自适应策略和完全自适应策略;对自适应乐观同步策略的模拟速度与精度进行了深入的测试比较,发现经过调整半自适应乐观策略能够取得更好的性能;也发现现有完全自适应算法中存在窗口调节反馈滞后和GVT计算开销过大等问题,是其乐观策略优化的方向之一。 展开更多
关键词 并行模拟器 面向对象的并行模拟环境(pose) 同步策略 性能评测
在线阅读 下载PDF
基于改进YOLO-Pose的复杂环境下拖拉机驾驶员关键点检测 被引量:10
15
作者 徐红梅 杨浩 +3 位作者 李亚林 张文杰 赵亚兵 吴擎 《农业工程学报》 EI CAS CSCD 北大核心 2023年第16期139-149,共11页
为解决农田复杂作业环境下拖拉机驾驶员因光照、背景及遮挡造成的关键点漏检、误检等难识别问题,该研究提出了一种基于改进YOLO-Pose的复杂环境下驾驶员关键点检测方法。首先,在主干网络的顶层C3模块中嵌入Swin Transformer编码器,提高... 为解决农田复杂作业环境下拖拉机驾驶员因光照、背景及遮挡造成的关键点漏检、误检等难识别问题,该研究提出了一种基于改进YOLO-Pose的复杂环境下驾驶员关键点检测方法。首先,在主干网络的顶层C3模块中嵌入Swin Transformer编码器,提高遮挡状况下关键点的检测效率。其次,采用高效层聚合网络RepGFPN作为颈部网络,通过融合高层语义信息和低层空间信息,增强多尺度检测能力,同时在颈部网络采用金字塔卷积替换标准3×3卷积,在减少模型参数量的同时有效地捕获不同层级的特征信息。最后,嵌入坐标注意力机制优化关键点解耦头,增强预测过程对关键点空间位置的敏感程度。试验结果表明,改进后算法mAP0.5(目标关键点相似度Loks阈值取0.5时平均精度均值)为89.59%,mAP0.5:0.95(目标关键点相似度Loks阈值取0.5,0.55,…,0.95时的平均精度均值)为62.58%,相比于基线模型分别提高了4.24和4.15个百分点,单张图像平均检测时间为21.9 ms,与当前主流关键点检测网络Hourglass、HRNet-W32及DEKR相比,mAP0.5分别提升了7.94、5.27、2.66个百分点,模型大小分别减少了257.5、8.2、9.3 M。改进后的关键点检测算法具有较高的检测精度和推理速度,可为拖拉机驾驶员的异常行为识别和状态监测提供技术支持。 展开更多
关键词 拖拉机 深度学习 检测 驾驶员 YOLO-pose 关键点
在线阅读 下载PDF
基于改进YOLO v8-Pose的红熟期草莓识别和果柄检测 被引量:30
16
作者 刘莫尘 褚镇源 +3 位作者 崔明诗 杨庆璐 王金星 杨化伟 《农业机械学报》 EI CAS CSCD 北大核心 2023年第S02期244-251,共8页
针对高架栽培模式下的大棚草莓,借鉴人体姿态检测算法,建立了改进YOLO v8-Pose模型对红熟期草莓进行识别与果柄关键点检测。通过对比YOLO v5-Pose、YOLO v7-Pose、YOLO v8-Pose模型,确定使用YOLO v8-Pose模型作为对红熟期草莓识别与关... 针对高架栽培模式下的大棚草莓,借鉴人体姿态检测算法,建立了改进YOLO v8-Pose模型对红熟期草莓进行识别与果柄关键点检测。通过对比YOLO v5-Pose、YOLO v7-Pose、YOLO v8-Pose模型,确定使用YOLO v8-Pose模型作为对红熟期草莓识别与关键点预测的模型。以YOLO v8-Pose为基础,对其网络结构添加Slim-neck模块与CBAM注意力机制模块,提高模型对小目标物体的特征提取能力,以适应草莓数据集的特点。改进YOLO v8-Pose能够有效检测红熟期草莓并准确标记出果柄关键点,P、R、mAP-kp分别为98.14%、94.54%、97.91%,比YOLO v8-Pose分别提高5.41、5.31、8.29个百分点。模型内存占用量为22 MB,比YOLO v8-Pose的占用量小6 MB。此外,针对果园非结构化的特征,探究了光线、遮挡与拍摄角度对模型预测的影响。对比改进前后的模型在复杂环境下对红熟期草莓的识别与果柄预测情况,改进YOLO v8-Pose在受遮挡、光线和角度影响情况下的mAPkp分别为94.52%、95.48%、94.63%,较YOLO v8-Pose分别提高8.9、10.75、5.17个百分点。改进YOLO v8-Pose可在保证网络模型精度的同时对遮挡、光线和拍摄角度等影响均具有较好的鲁棒性,能够实现对复杂环境下红熟期草莓识别与果柄关键点预测。 展开更多
关键词 红熟期草莓识别 关键点预测 YOLO v8-pose 注意力机制
在线阅读 下载PDF
基于改进YOLOv8-pose的分心驾驶检测与识别 被引量:4
17
作者 朱周华 侯智杰 +1 位作者 田成源 周怡纳 《电子测量技术》 北大核心 2024年第15期135-143,共9页
针对现有的分心驾驶检测算法存在检测率低、检测速率慢等问题,本文构建了一种基于改进YOLOv8-pose的分心驾驶检测识别模型YOLOv8-EFM。首先,通过使用EfficientViT更换YOLOv8-pose的主干网络,结合CNN和VIT之间的互补性,提升了检测的准确... 针对现有的分心驾驶检测算法存在检测率低、检测速率慢等问题,本文构建了一种基于改进YOLOv8-pose的分心驾驶检测识别模型YOLOv8-EFM。首先,通过使用EfficientViT更换YOLOv8-pose的主干网络,结合CNN和VIT之间的互补性,提升了检测的准确率;其次,使用FasterBlock模块替换C2f中的Bottleneck模块,增加了检测速率并减小模型参数;最后在SPPF后加入了轻量级的MLCA注意力模块,在模型大小和准确性之间取得了良好的平衡。实验结果表明,本文所构建的YOLOv8-EFM模型,mAP50可以达到98.9%,模型大小只有9.7 M,该方法不仅可以识别出具体分心行为,还可以检测上半身的人体骨架,可以有效应用在驾驶员分心驾驶的检测场景中。 展开更多
关键词 分心检测 人体姿态估计 YOLOv8-pose EfficientViT FasterNet MLCA
在线阅读 下载PDF
基于改进YOLOv8-Pose的码垛快速识别与抓取点检测 被引量:3
18
作者 郭忠峰 王健鹏 +1 位作者 杨钧麟 杨春源 《组合机床与自动化加工技术》 北大核心 2024年第11期125-129,共5页
针对码垛场景中在仓库内对米袋和面袋的识别与抓取点检测的任务,提出了一种基于改进的YOLOv8-Pose的轻量化快速检测算法模型。其基于YOLOv8-Pose,使用若干个ShuffleNetv2模块取代原Darknet主干网络,降低模型大小;添加SimAM注意力机制,... 针对码垛场景中在仓库内对米袋和面袋的识别与抓取点检测的任务,提出了一种基于改进的YOLOv8-Pose的轻量化快速检测算法模型。其基于YOLOv8-Pose,使用若干个ShuffleNetv2模块取代原Darknet主干网络,降低模型大小;添加SimAM注意力机制,提升目标特征提取能力。通过对比实验表明,该模型在不牺牲准确性的前提下可提升模型的识别速度。模型在自制数据集中的平均精度达到了93.7%,检测速度达到了62 fps,优于常见模型。证明该模型能够实现复杂场景下的抓取点识别,且该轻量化模型能够适用于嵌入式硬件,降低设备成本。 展开更多
关键词 抓取点检测 YOLOv8-pose ShuffleNetv2 轻量化网络结构
在线阅读 下载PDF
基于Yolov7_Pose的轻量化人体姿态估计网络 被引量:1
19
作者 黄健 胡翻 展越 《现代电子技术》 北大核心 2024年第23期98-104,共7页
人体姿态估计在计算机视觉、人机交互与运动分析等领域广泛应用。当前人体姿态估计算法往往通过构建复杂的网络来提高精度,但这带来了模型体量和计算量增大,以及检测速度变慢等问题。因此,文中提出一种基于Yolov7_Pose的轻量化人体姿态... 人体姿态估计在计算机视觉、人机交互与运动分析等领域广泛应用。当前人体姿态估计算法往往通过构建复杂的网络来提高精度,但这带来了模型体量和计算量增大,以及检测速度变慢等问题。因此,文中提出一种基于Yolov7_Pose的轻量化人体姿态估计网络。首先,采用轻量化CARAFE模块替换原网络中的上采样模块,完成上采样工作;接着,在特征融合部分引入轻量化Slim-neck模块,以降低模型的计算量和复杂度;最后,提出了RFB-NAM模块,将其添加到主干网络中,用以获取多个不同尺度的特征信息,扩大感受野,提高特征提取能力。实验结果表明,改进后网络模型的GFLOPs和模型大小分别降低了约18.1%、22%,检测速度提升37.93%,并在低光环境、小目标、密集人群和俯视角度下表现出了较好的性能。 展开更多
关键词 人体姿态估计 Yolov7_pose 轻量化 上采样 CARAFE Slim-neck
在线阅读 下载PDF
基于改进YOLOv8n-pose和三维点云分析的蒙古马体尺自动测量方法 被引量:5
20
作者 李明煌 苏力德 +2 位作者 张永 宗哲英 张顺 《智慧农业(中英文)》 CSCD 2024年第4期91-102,共12页
[目的/意义]准确高效地获取马匹体尺信息是马产业现代化进程中的关键环节。传统的人工测量方法耗时长、工作量大,且会对马匹造成一定应激反应。因此,实现准确且高效的体尺参数自动测量对于制定蒙古马早期育种计划至关重要。[方法]选择Az... [目的/意义]准确高效地获取马匹体尺信息是马产业现代化进程中的关键环节。传统的人工测量方法耗时长、工作量大,且会对马匹造成一定应激反应。因此,实现准确且高效的体尺参数自动测量对于制定蒙古马早期育种计划至关重要。[方法]选择Azure Kinect深度相机获取蒙古马双侧RGB-D数据,以YOLOv8n-pose为基础,通过在C2f模块中引入可变形卷积(Deformable Convolution v2, DCNv2),同时添加洗牌注意力机制(Shuffle Attention, SA)模块和优化损失函数(SCYLLA-IoU Loss, SIoU)的方法,利用余弦退火法动态调整学习率,提出一种名为DSS-YOLO (DCNv2-SA-SIoU-YOLO)的模型用于蒙古马体尺关键点的检测。其次,将RGB图中的二维关键点坐标与深度图中对应深度值相结合,得到关键点三维坐标,并实现蒙古马点云信息的转换。利用直通滤波、随机抽样一致性(Random Sample Consensus, RANSAC)、统计离群值滤波、主成分分析法(Principal Component Analysis, PCA)完成点云处理与分析。最终根据关键点坐标自动计算体高、体斜长、臀高、胸围和臀围5项体尺参数。[结果和讨论] DSS-YOLO的平均关键点检测精度为92.5%;d_(DSS)为7.2个像素;参数量和运算量分别仅为3.48 M和9.1 G。体尺参数自动测量结果与人工测量值相比,各项体尺参数的整体平均绝对误差为3.77 cm;平均相对误差为2.29%。[结论]研究结果可为蒙古马运动性能相关遗传参数的确定提供技术支撑。 展开更多
关键词 蒙古马 体尺测量 卷积神经网络 注意力机制 三维点云处理 YOLOv8n-pose
在线阅读 下载PDF
上一页 1 2 117 下一页 到第
使用帮助 返回顶部