期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
北京地区PM_(2.5)浓度影响因素及估算模型 被引量:8
1
作者 谷阳阳 苏贵金 +4 位作者 柴涛 高丽荣 刘雅露 李倩倩 魏大 《环境化学》 CAS CSCD 北大核心 2018年第3期397-409,共13页
为研究PM_(2.5)与大气污染物浓度之间的关系以及气象条件对PM_(2.5)浓度的影响,本文运用数学统计方法,对北京顺义区2016年1月—12月PM_(2.5)及大气污染物和气象要素的数据资料进行分析并建立了北京顺义区PM_(2.5)浓度的估算模型.双变量... 为研究PM_(2.5)与大气污染物浓度之间的关系以及气象条件对PM_(2.5)浓度的影响,本文运用数学统计方法,对北京顺义区2016年1月—12月PM_(2.5)及大气污染物和气象要素的数据资料进行分析并建立了北京顺义区PM_(2.5)浓度的估算模型.双变量相关性分析的结果表明,PM_(2.5)浓度与PM_(10)、SO_2、NO_2、O_3以及CO等大气污染物浓度与温度、湿度、压强和风速风向等气象条件间呈现强的相关性.建立了PM_(2.5)与单因素拟合模型,其中PM_(10)、NO_2和CO与PM_(2.5)浓度拟合模型的R^2均大于0.6.识别了对PM_(2.5)浓度有显著影响的二阶、三阶交互作用的因素交叉项.综合考虑单个影响因素与影响因素间交互作用的对PM_(2.5)浓度的影响,采用因子分析方法并对提取的主成分进行回归分析,建立了拟合度R^2为0.887的PM_(2.5)浓度估算模型. 展开更多
关键词 pm2.5浓度模型 影响因素 因子分析 大气污染物 气象条件 北京
在线阅读 下载PDF
基于改进粒子群优化BP_Adaboost神经网络的PM_(2.5)浓度预测 被引量:14
2
作者 李晓理 梅建想 张山 《大连理工大学学报》 EI CAS CSCD 北大核心 2018年第3期316-323,共8页
为了提高大气污染物浓度预测精度,采用灰色关联分析选取影响大气中PM_(2.5)浓度的主要因子,并以此作为神经网络输入变量,建立一种基于BP_Adaboost神经网络的PM_(2.5)浓度预测模型.用改进粒子群算法来选择BP_Adaboost神经网络权重和阈值... 为了提高大气污染物浓度预测精度,采用灰色关联分析选取影响大气中PM_(2.5)浓度的主要因子,并以此作为神经网络输入变量,建立一种基于BP_Adaboost神经网络的PM_(2.5)浓度预测模型.用改进粒子群算法来选择BP_Adaboost神经网络权重和阈值,可以有效避免神经网络在训练时陷入局部最优解.根据北京市海淀区万柳监测站和朝阳区北京工业大学监测点每小时监测的大气污染物浓度和气象条件,分别选择2014-11-01~2014-11-25和2017-07-07~2017-08-06数据作为实验研究对象.仿真结果表明,在PM_(2.5)浓度预测中,相比于BP_Adaboost、BP和广义回归神经网络3种预测模型,改进粒子群优化BP_Adaboost神经网络预测性能更优. 展开更多
关键词 灰色关联分析 BP_Adaboost神经网络 pm2.5浓度预测模型 改进粒子群算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部