The need to develop armour systems to protect against attacks from various sources is increasingly a matter of personal,social and national security.To develop innovative armour systems it is necessary to monitor deve...The need to develop armour systems to protect against attacks from various sources is increasingly a matter of personal,social and national security.To develop innovative armour systems it is necessary to monitor developments being made on the type,technology and performance of the threats(weapons,projectiles,explosives,etc.) Specifically,the use of high protection level helmets on the battlefield is essential.The development of evaluation methods that can predict injuries and trauma is therefore of major importance.However,the risk of injuries or trauma that can arise from induced accelerations is an additional consideration.To develop new materials and layouts for helmets it is necessary to study the effects caused by ballistic impacts in the human head on various scenarios.The use of numerical simulation is a fundamental tool in this process.The work here presented focuses on the use of numerical simulation(finite elements analysis) to predict the consequences of bullet impacts on military helmets on human injuries.The main objectives are to assess the level and probability of head trauma using the Head Injury Criterion,caused by the impact of a 9 mm NATO projectile on a PASGT helmet and to quantify the relevance of projectile plasticity on the whole modelling process.The accelerations derived from the impact phenomenon and the deformations caused on the helmet are evaluated using fully three-dimensional models of the helmet,head,neck and projectile.Impact studies are done at impact angles ranging from 0 to 75°.Results are presented and discussed in terms of HIC and probability of acceleration induced trauma levels.Thorough comparison analyses are done using a rigid and a deformable projectile and it is observed that plastic deformation of the projectile is a significant energy dissipation mechanism in the whole impact process.展开更多
Texture evolution and inhomogeneous deformation of polycrystalline Cu during uniaxial compression are investigated at the grain scale by combining crystal plasticity finite element method(CPFEM) with particle swarm op...Texture evolution and inhomogeneous deformation of polycrystalline Cu during uniaxial compression are investigated at the grain scale by combining crystal plasticity finite element method(CPFEM) with particle swarm optimization(PSO) algorithm. The texture-based representative volume element(TBRVE) is used in the crystal plasticity finite element model, where a given number of crystallographic orientations are obtained by means of discretizing the orientation distribution function(ODF) based on electron backscattered diffraction(EBSD) experiment data. Three-dimensional grains with different morphologies are generated on the basis of Voronoi tessellation. The PSO algorithm plays a significant role in identifying the material parameters and saving computational time. The macroscopic stress–strain curve is predicted based on CPFEM, where the simulation results are in good agreement with the experimental ones. Therefore, CPFEM is a powerful candidate for capturing the texture evolution and clarifying the inhomogeneous plastic deformation of polycrystalline Cu. The simulation results indicate that the <110> fiber texture is generated finally with the progression of plastic deformation. The inhomogeneous distribution of rotation angles lays the foundation for the inhomogeneous deformation of polycrystalline Cu in terms of grain scale.展开更多
The predictive capacity of numerical analyses in geotechnical engineering depends strongly on the efficiency of constitutive models used for modeling of interfaces behavior.Interfaces are considered as thin layers of ...The predictive capacity of numerical analyses in geotechnical engineering depends strongly on the efficiency of constitutive models used for modeling of interfaces behavior.Interfaces are considered as thin layers of the soil adjacent to structures boundary whose major role is transferring loads from structures to soil masses.An interface model within the bounding surface plasticity framework and the critical state soil mechanics is presented.To this aim,general formulation of the interface model according to the bounding surface plasticity theory is described first.Similar to granular soils,it has been shown that the mechanical behavior of sand-structure interfaces is highly affected by the interface state that is the combined influences of density and applied normal stress.Therefore,several ingredients of the model are directly related to the interface state.As a result of this feature,the model is enabled to distinguish interfaces in dense state from those in loose state and to provide realistic predictions over wide ranges of density and normal stress values.In evaluation of the model,a reasonable correspondence between the model predictions and the experimental data of various research teams is found.展开更多
Based on the pseudo potential plane-wave method of density functional theory (DFT), Ti1-xNbxAk (x=0, 0.062 5, 0.083 3, 0.125, 0.250) crystals' geometry structure, elastic constants, electronic structure and Mulli...Based on the pseudo potential plane-wave method of density functional theory (DFT), Ti1-xNbxAk (x=0, 0.062 5, 0.083 3, 0.125, 0.250) crystals' geometry structure, elastic constants, electronic structure and Mulliken populations were calculated, and the effects of doping on the geometric structure, electronic structure and bond strength were systematically analyzed. The results show that the influence of Nb on the geometric structure is little in terms of the plasticity, and with the increase of Nb content, the covalent bond strength remarkably reduces, and Ti-Al, Nb-M (M=Ti, Al) and other hybrid bonds enhance; meanwhile, the peak district increases and the pseudo-energy gap first decreases and then increases, the overall band structure narrows, the covalent bond and direction of bonds reduce. The population analysis also shows that the results are consistent with the electronic structure analysis. The density of states of TiAINb shows that Nb doping can enhance the activity of Al and benefit the form of Al2O3 film. All the calculations reveal that the room temperature plasticity and the antioxidation properties of the compounds can be improved with the Nb content of 8.33%-12.5% (mole fraction).展开更多
This work identified the important role of matrix mechanical plasticity in mediating fibroblast activation.Many existing studies have highlighted the important effects of biochemical cues(e.g.,transforming growth fact...This work identified the important role of matrix mechanical plasticity in mediating fibroblast activation.Many existing studies have highlighted the important effects of biochemical cues(e.g.,transforming growth factor-β1)and mechanicalstiffness on fibroblast activation.Our results indicated that self-assembled collagen hydrogels showed high plasticity and in which fibroblasts remain undifferentiated.However,when we decreased the plasticity of collagen hydrogels by increasing covalent crosslinking,fibroblasts showed a significant fibrotic response as reflected by the increasedα-SMA expression.Since the material systems we constructed have low and the same initial modulus,this process is stiffness independent.Although it has been reported that covalently crosslinked hydrogels are more difficult to degrade and matrix degradability has an important impact on cell behaviors,no significant changes of fibroblast activation were observed when proteases were broadly inhibited in our experiments.Importantly,the hydrogels we constructed showed similar plastic behaviors under creep and recovery tests compared to native normal and fibrotic tissues.These highlight the importance of matrix plasticity in mimicking the mechanical microenvironment of native fibrotic tissues.Mechanistically,we found that the enhanced fibroblast activation in low plastic matrix is mediated through integrin-actin pathway and nuclear localization of YAP.In high plastic collagen,matrix cannot provide effective resistance to actin contraction because of the rupture of weak crosslinks and the slippage of local fibers.On the contrary,in low plastic collagen,deformation energy can be stored in the network due to the existence of strong covalent crosslinks,thus enabling the build-up of cell traction and the formation of a robust cell-matrix interaction.Experiments of inhibiting or promoting cytoskeletal contractility and CGMD simulation both verified the above points.Our results clarify plasticity changes on the development of fibrotic diseases and highlight plasticity as an important mechanical cue in understanding cell-matrix interactions.展开更多
OBJECTIVE Currently, almost all chemical compounds or biological reagents to reverse or slow down the AD process have failed in clinical trials. An integrative and multi-targeted strategy is increasingly appreciated t...OBJECTIVE Currently, almost all chemical compounds or biological reagents to reverse or slow down the AD process have failed in clinical trials. An integrative and multi-targeted strategy is increasingly appreciated to effectively combat this devastating disease. Traditional Chinese medicine(TCM) has been widely used for treatment of dementia, and thus the advantages of the potential therapeutic features of TCM treatment and associated mechanisms should be well taken. The Amnesia Remedy Formula(ARF) was invented by one of the most influential Master of TCM SUN Si-miao, who lived for about 100 year old. The aim of this research is to characterize the time course changes of the cognitive behaviors post a ARF, and the mechanism underlying the effects, focusing on PKA-centered signaling for both enhancement of neural plasticity and clearance of the phosphorylated Tau. RESULTS We tested the efficacy of ARF on two animal models of AD, and examine the central role of PKA signaling in the enhancement of neural plasticity via PKA/CREB/BDNF pathway as well as clearance of toxic p Tau via PKA/GSK3β/p Tau pathway. In the scopolamine model, ARF effectively reversed the memory in Morris water maze(MWM) test, with some features superior to anti-AD drug donepezil. In a battery test of MWM, novel object recognition or T maze in 5-month-old senescenceaccelerated mouse prone 8(SAMP8) strain mice, two weeks of administration of ARF showed overall better improvement in memory loss than donepezil, and the effect lasted for at least 1 week after termination of administration of the formula. ARF increased expression of PKA/CREB/BDNF and synaptic proteins PSD95 expression, as well as enhanced Ser9 phosphorylation of GSK3β, thus reduced p Tau in the hippocampus. Blockade of PKA signaling blunted the anti-AD-like effect of ARF, with reversal of CREB/BDNF signaling. Transcriptomic analysis indicated some changes of novel molecules along this pathway may be part of the pathological and therapeutic mechanism, which warrants further investigation. CONCLUSION ARF may display some advantageous features in treating AD with early onset, via multi-targeted manner including enhancement of neural plasticity and reduction in Tau toxicity.展开更多
OBJECTIVE To investigate whether electroacupuncture(EA)ameliorates abnormal trigeminal neuralgia(TN)orofacial pain and anxiety-like behavior by altering synaptic plasticity in the hippocampus CA1.METHODS A mouse infra...OBJECTIVE To investigate whether electroacupuncture(EA)ameliorates abnormal trigeminal neuralgia(TN)orofacial pain and anxiety-like behavior by altering synaptic plasticity in the hippocampus CA1.METHODS A mouse infraorbital nerve transection model(pTION)of neuropathic pain was established,and EA or sham EA was used to treat ipsilateral acu⁃puncture points(GV20-Baihui and ST7-Xia⁃guan).Golgi-Cox staining and transmission elec⁃tron microscopy(TEM)were administrated to observe the changes of synaptic plasticity in the hippocampus CA1.RESULTS Stable and persistent orofacial allodynia and anxiety-like behav⁃iors induced by pT-ION were related to changes in hippocampal synaptic plasticity.Golgi stain⁃ings showed a decrease in the density of dendritic spines,especially mushroom-type dendritic spines,in hippocampal CA1 neurons of pT-ION mice.TEM results showed that the density of synapses,membrane thickness of the postsynaptic density,and length of the synaptic active zone were decreased,whereas the width of the synaptic cleft was increased in pTION mice.EA attenu⁃ated pT-ION-induced orofacial allodynia and anx⁃iety-like behaviors and effectively reversed the abnormal changes in dendritic spines and syn⁃apse of the hippocampal CA1 region.CONCLU⁃SION EA modulates synaptic plasticity of hippo⁃campal CA1 neurons,and reduces abnormal oro⁃facial pain and anxiety-like behavior,providing evidence for a TN treatment strategy.展开更多
Compaction processes are one the most important par ts of powder forming technology. The main applications are focused on pieces for a utomotive, aeronautic, electric and electronic industries. The main goals of the c...Compaction processes are one the most important par ts of powder forming technology. The main applications are focused on pieces for a utomotive, aeronautic, electric and electronic industries. The main goals of the compaction processes are to obtain a compact with the geometrical requirements, without cracks, and with a uniform distribution of density. Design of such proc esses consist, essentially, in determine the sequence and relative displacements of die and punches in order to achieve such goals. A.B. Khoei presented a gener al framework for the finite element simulation of powder forming processes based on the following aspects; a large displacement formulation, centred on a total and updated Lagrangian formulation; an adaptive finite element strategy based on error estimates and automatic remeshing techniques; a cap model based on a hard ening rule in modelling of the highly non-linear behaviour of material; and the use of an efficient contact algorithm in the context of an interface element fo rmulation. In these references, the non-linear behaviour of powder was adequately desc ribed by the cap plasticity model. However, it suffers from a serious deficiency when the stress-point reaches a yield surface. In the flow theory of plasticit y, the transition from an elastic state to an elasto-plastic state appears more or less abruptly. For powder material it is very difficult to define the locati on of yield surface, because there is no distinct transition from elastic to ela stic-plastic behaviour. Results of experimental test on some hard met al powder show that the plastic effects were begun immediately upon loading. In such mater ials the domain of the yield surface would collapse to a point, so making the di rection of plastic increment indeterminate, because all directions are normal to a point. Thus, the classical plasticity theory cannot deal with such materials and an advanced constitutive theory is necessary. In the present paper, the constitutive equations of powder materials will be discussed via an endochronic theory of plasticity. This theory provides a unifi ed point of view to describe the elastic-plastic behaviour of material since it places no requirement for a yield surface and a ’loading function’ to disting uish between loading an unloading. Endochronic theory of plasticity has been app lied to a number of metallic materials, concrete and sand, but to the knowledge of authors, no numerical scheme of the model has been applied to powder material . In the present paper, a new approach is developed based on an endochronic rate independent, density-dependent plasticity model for describing the isothermal deformation behavior of metal powder at low homologous temperature. Although the concept of yield surface has not been explicitly assumed in endochronic theory, it is shown that the cone-cap plasticity yield surface (Fig.1), which is the m ost commonly used plasticity models for describing the behavior of powder materi al can be easily derived as a special case of the proposed endochronic theory. Fig.1 Trace of cone-cap yield function on the meridian pl ane for different relative density As large deformation is observed in powder compaction process, a hypoelastic-pl astic formulation is developed in the context of finite deformation plasticity. Constitutive equations are stated in unrotated frame of reference that greatly s implifies endochronic constitutive relation in finite plasticity. Constitutive e quations of the endochronic theory and their numerical integration are establish ed and procedures for determining material parameters of the model are demonstra ted. Finally, the numerical schemes are examined for efficiency in the model ling of a tip shaped component, as shown in Fig.2. Fig.2 A shaped tip component. a) Geometry, boundary conditio n and finite element mesh; b) density distribution at final stage of展开更多
The distribution of shear stress on the cross-section of plastic metal solid circular shaft under pure torsion yielding, the applicability of complete plastic model assumption and the shear stress formula were researc...The distribution of shear stress on the cross-section of plastic metal solid circular shaft under pure torsion yielding, the applicability of complete plastic model assumption and the shear stress formula were researched. Based on the shear stress formula of circular shaft under pure torsion in elastic stage, the formula of torque in elastic stage and the definition of yield, it is obtained that the yielding stage of plastic metal shaft under pure torsion is only a surface phenomenon of torque-torsion angle relationship, and the distribution of shear stress is essentially different from that of tensile stress when yielding under uniaxial tension. The pure torsion platform-torsion angle and the shape of torque-torsion angle curve cannot change the distribution of shear stress on the shaft cross-section. The distribution of shear stress is still linear with the maximum shear stress ts. The complete plasticity model assumption is not in accordance with the actual situation of shaft under torsion. The experimental strength data of nine plastic metals are consistent with the calculated results of the new limiting strain energy strength theory (LSEST). The traditional yield stress formula for plastic shaft under torsion is reasonable. The shear stress formula based on the plane assumption in material mechanics is applicable for all loaded stages of torsion shaft.展开更多
[Objective]The work is devoted to the study of irreversible deformation of artificial samples subjected to a set of standard experiments,with an aim to study their mechanical properties.The principal idea of the study...[Objective]The work is devoted to the study of irreversible deformation of artificial samples subjected to a set of standard experiments,with an aim to study their mechanical properties.The principal idea of the study is related to the preparation of an artificial material with an established constitutive behavior model.The existence of such a well-described material provides future opportunities to conduct controllable experiments on various mechanical processes in rock-like material for further development and validation of theoretical models used in rock mechanics.[Methods]A set of artificial samples was prepared for careful assessment through a number of loading tests.Experimental work was carried out to determine the rheological properties under conditions of triaxial compression tests and uniaxial tension.Triaxial loading tests are completed for 9 samples with varying radial stress levels(0-5 MPa).The samples are loaded up to the yield point with control of radial and volumetric strain.The experimental results,which contain the obtained interrelationships between axial and radial stresses and strains,are analyzed using the Drucker-Prager yield surface.Material hardening is taken into account through the non-associated plastic flow law with the cap model.Numerical modeling of sample loading is performed through the finite difference method.Mathematical model parameters are adjusted to minimize the discrepancy between numerical modeling results and experimental data.The design of a series of experimental studies necessary to determine all the parameters of the model has been studied.[Results]It is shown that the formulated mathematical model allows to reliably reproduce the inelastic behavior of the studied material,and it can be used to solve a set of applied problems in continuum mechanics,the problem of numerical simulation of hydraulic fracture growth in an elastoplastic medium in particular.It was found that for the entire range of applied lateral loads(0-5 MPa),the elastic limit varied from 2 to 4 MPa,after which the material began to behave plastically.It was also determined that at lateral loads≥3 MPa,compaction began to appear in the material beyond the yield point.Judging by the dependence of volumetric strains under a lateral load equal to 1.4 MPa,compaction should begin to appear even at lateral loads lower than 3 MPa.[Conclusion]Taking the plastic behavior of the material into account is necessary when moving on to modeling the hydraulic fracturing process in such a material,and the resultant plasticity parameters for the model material can be used for numerical modeling of elastoplastic deformation of the rock under consideration,including processes such as hydraulic fracture growth in a poroelastoplastic medium.[Significance]The suggested procedure to interpret results of experimental studies can be used for further numerical modeling of mechanical processes in rock masses with inelastic strain accumulation.This opportunity can increase the reliability of geomechanical models used for the optimization of hydrocarbon fields development.展开更多
The research demonstrated that laser powder bed fusion(LPBF)coupled with controlled annealing at 1200°C,could significantly increase the proportion of coincidence site lattice(CSL)grain boundary,thereby achieving...The research demonstrated that laser powder bed fusion(LPBF)coupled with controlled annealing at 1200°C,could significantly increase the proportion of coincidence site lattice(CSL)grain boundary,thereby achieving an outstanding synergy of enhanced strength and exceptional ductility.The plastic deformation behavior,strain hardening behavior,and fracture behavior of LPBF 316L steel annealing at 1200℃for 20 h were studied through quasi-in-situ tensile process.It was found that LPBF 316L steel formed a certain proportion of deformation twins during the tensile process,and the formation of twins changed the crystal orientation,thus promoting further slip and crystal deformation.The synergistic effect of slip and twin promoted higher plasticity.LPBF process coupled with controlled annealing at 1200°C for 20 h leads to a ultimate tensile strength of 613 MPa and total elongation of 73.8%.展开更多
A new dimensionless number is proposed for dynamic plastic deformation analysis of clamped circular plates under underwater explosion loads by introducing dimensional analysis method to the basic dynamical governing e...A new dimensionless number is proposed for dynamic plastic deformation analysis of clamped circular plates under underwater explosion loads by introducing dimensional analysis method to the basic dynamical governing equations of circular plates.The relation between dimensionless final plastic deformation of circular plates and the new dimensionless number is established based on massive underwater explosion test data.Meanwhile,comparative analysis was discussed with two other published dimensionless parameters which indicated the new dimensionless number proposed in this paper is more effective and extensive to predict the dynamic plastic response of circular plates under underwater explosion condition.展开更多
The electric vertical takeoff and landing(e VTOL)aircraft shows great potential for rapid military personnel deployment on the battlefield.However,its susceptibility to control loss,complex crashes,and extremely limit...The electric vertical takeoff and landing(e VTOL)aircraft shows great potential for rapid military personnel deployment on the battlefield.However,its susceptibility to control loss,complex crashes,and extremely limited bottom energy-absorbing space demands higher comprehensive crashworthiness of its subfloor thin-walled structures.This study investigated the energy absorption capacity of novel concave polygonal carbon fiber reinforced plastics(CFRP)tubes under multi-angle collisions.Quasistatic compression experiments and finite element simulations were conducted to assess the failure mode and energy absorption.The influences of cross-section shapes,loading conditions,and geometry parameters on crashworthiness metrics were further analyzed.The results revealed that,under the similar weight,concave polygonal tubes exhibited superior energy absorption under axial loads compared to regular polygonal and circular tubes,attributed to the increased number of axial splits.However,both regular and concave polygonal tubes,particularly the latter,demonstrated reduced oblique energy absorption compared to traditional square tubes with the increasing ratio of SEA value decreased from 20%-16%.Notably,this reduction in energy absorption can be compensated for by the implementation of inward and outward crusher plugs,and with them,the concave polygonal tubes demonstrated outstanding overall crashworthiness performance under multiple loading conditions.This concave cross-sectional design methods could serve as a guidance for the development of the eVTOL subfloor.展开更多
Conventional plasticizers deteriorate mechanical and viscoelastic properties of the propellants due to their migration upon aging and long-term storage,which affects reliability and safety properties during exploitati...Conventional plasticizers deteriorate mechanical and viscoelastic properties of the propellants due to their migration upon aging and long-term storage,which affects reliability and safety properties during exploitation.To address this issue,conventional plasticizer,dioctyl adipate(DOA),is replaced by reactive one,castor oil(CO).In addition,three different types of HTPB were used to obtain propellants with designed viscoelastic and mechanical properties.The CO increased propellants viscosity,without a significant impact on the propellant processability,regardless to the type of prepolymer.Conversely,mechanical properties were different depending on the type of resin,which were further analyzed by gel permeation chromatography(GPC).Addition of CO formed a denser polymer network and shifted T_(g) to higher values,compared to the compositions with DOA.The tensile strength of CO-containing propellants was lower at +20℃ and +50℃ compared to the reference compositions,while the strain at maximum load and strain at break were significantly increased with pronounced plastic deformation,especially for samples at -30℃.The inclusion of CO in the propellants composition gives more room for adjusting a wide range of mechanical properties.展开更多
In this work,a Cu-10Ta alloy with a copper to tantalum mass ratio of 9:1 is prepared using powder metallurgy technology.Physical properties of the alloy,including density,microstructure,melting point,and constant-volu...In this work,a Cu-10Ta alloy with a copper to tantalum mass ratio of 9:1 is prepared using powder metallurgy technology.Physical properties of the alloy,including density,microstructure,melting point,and constant-volume specific heat,are tested.Via the split Hopkinson pressure bar(SHPB)and flyerplate impact experiments,the relationship between equivalent stress and equivalent plastic strain of the material is studied at temperatures of 298-823 K and under strain rates of 1×10^(-3)-5.2×10^(3)s^(-1),and the Hugoniot relationship at impact pressures of 1.46-17.25 GPa and impact velocities of 108-942 m/s is obtained.Evolution of the Cu-10Ta microstructure that occurs during high-strain-rate impact is analyzed.Results indicate that the Cu-10Ta alloy possesses good thermal stability,and at ambient temperatures of up to 50%its melting point,stress softening of less than 15%of the initial strength is observed.A modified J-C constitutive model is employed to accurately predict the variation of yield strength with strain rate.Under strong impact,the copper phase is identified as the primary source of plastic deformation in the Cu-10Ta alloy,while significant deformation of the high-strength tantalum particles is less pronounced.Furthermore,the longitudinal wave speed D is found to correlate linearly with the particle velocity u upon strong impact.Analysis reveals that the sound speed and spallation strength of the alloy increase with increasing impact pressure.展开更多
OBJECTIVE Major depressive disorder(MDD) is a common mental illness,which shows serious dysfunction in emotion,motivation and cognition. The imbalance of monoamine neurotransmitter is the classic pathogenesis of depre...OBJECTIVE Major depressive disorder(MDD) is a common mental illness,which shows serious dysfunction in emotion,motivation and cognition. The imbalance of monoamine neurotransmitter is the classic pathogenesis of depression,but more and more evidence indicates that glutamatergic transmission may be the key factor leading to the occurrence of depression. However,the role of the membrane expression and regulation of glutamate receptors in the development of depression has not been elucidated. To address this issue,we have done series of experiments. METHODS Different methods and techniques,such as behavior,morphology,molecular biology and electrophysiology,were applied to investigate the impact of glutamate receptors and their subunits in the regulation of synaptic plasticity and the mechanism in depressive animal models. RESULTS Chronic social defeat stress(CSDS) can induce depressive behaviors in wildtype(WT) mice but not caspase-1 knockout(KO) mice. Further experiments showed that,in WT mice,CSDS induced a significant decrease in the membrane expression levels of the GluR1 and GluR2 subunits of AMPA receptors,the amplitudes of m EPSC in hippocampal CA1,meanwhile the long-term potentiation(LTP) at hippocampus SC-CA1 pathway was also impaired. Oppositely,this CSDS-induced reduction of the membrane expression of AMPA receptors was prevented by the knockout of caspase-1 or caspase-1 inhibitor,in which the expression of GluA1 and GluA2 were upregulated from(60.2±3.4)% and(63.9±3.7)% to(120.1±5.9)%and(112.6±9.6)%,respectively,while the total protein level of AMPA receptor subunits were not affected.On the other hand,a chronic intracerebroventricular injection of IL-1β,a downstream signal molecule of caspase-1,could induce depression-and anxiety-like behaviors in caspase-1 KO mice. CONCLUSION The caspase-1 can mediate the stress-induced depression-like behaviors by down-regulation of the membrane expression of AMPA receptors in hippocampus,the inhibition or knock-out of caspase-1can increase the expression of AMPA receptors in the membrane,thus reversing the depression-like behavior. Caspase-1 may serve as new target for depression therapy.展开更多
A method was established for determination of the reducing substances released from plastic blood bags to anticoagulant.The samples were extracted with a solid-phase extraction procedure using dichloromethane as extra...A method was established for determination of the reducing substances released from plastic blood bags to anticoagulant.The samples were extracted with a solid-phase extraction procedure using dichloromethane as extract solvents.The extracts were measured with GC-MS.Several reducing substances,such as 1,2-benzenedicarboxylic acid,alkane and bis(2-ethylhexyl) phthalate,etc were found in anticoagulant.The method was simple and can be used for the quality control of plastic blood bags.展开更多
Brominated flame-retardant,such as deca-BDE,TBBP-A,TBBP-A-bis is one kind of the additives of plastic product for flame retardation.European has published a direction to restrict the used amount of brominated flame-re...Brominated flame-retardant,such as deca-BDE,TBBP-A,TBBP-A-bis is one kind of the additives of plastic product for flame retardation.European has published a direction to restrict the used amount of brominated flame-retardant,because of their toxicity.The present work reports a GC-MS method for the determination of the brominated retardants.The method meets the requirements of the direction 2002/95/EC,and has been applied to the real sample analysis.展开更多
文摘The need to develop armour systems to protect against attacks from various sources is increasingly a matter of personal,social and national security.To develop innovative armour systems it is necessary to monitor developments being made on the type,technology and performance of the threats(weapons,projectiles,explosives,etc.) Specifically,the use of high protection level helmets on the battlefield is essential.The development of evaluation methods that can predict injuries and trauma is therefore of major importance.However,the risk of injuries or trauma that can arise from induced accelerations is an additional consideration.To develop new materials and layouts for helmets it is necessary to study the effects caused by ballistic impacts in the human head on various scenarios.The use of numerical simulation is a fundamental tool in this process.The work here presented focuses on the use of numerical simulation(finite elements analysis) to predict the consequences of bullet impacts on military helmets on human injuries.The main objectives are to assess the level and probability of head trauma using the Head Injury Criterion,caused by the impact of a 9 mm NATO projectile on a PASGT helmet and to quantify the relevance of projectile plasticity on the whole modelling process.The accelerations derived from the impact phenomenon and the deformations caused on the helmet are evaluated using fully three-dimensional models of the helmet,head,neck and projectile.Impact studies are done at impact angles ranging from 0 to 75°.Results are presented and discussed in terms of HIC and probability of acceleration induced trauma levels.Thorough comparison analyses are done using a rigid and a deformable projectile and it is observed that plastic deformation of the projectile is a significant energy dissipation mechanism in the whole impact process.
基金Projects(51305091,51475101) supported by the National Natural Science Foundation of ChinaProject(20132304120025) supported by Specialized Research Fund for the Doctoral Program of Higher Education,China
文摘Texture evolution and inhomogeneous deformation of polycrystalline Cu during uniaxial compression are investigated at the grain scale by combining crystal plasticity finite element method(CPFEM) with particle swarm optimization(PSO) algorithm. The texture-based representative volume element(TBRVE) is used in the crystal plasticity finite element model, where a given number of crystallographic orientations are obtained by means of discretizing the orientation distribution function(ODF) based on electron backscattered diffraction(EBSD) experiment data. Three-dimensional grains with different morphologies are generated on the basis of Voronoi tessellation. The PSO algorithm plays a significant role in identifying the material parameters and saving computational time. The macroscopic stress–strain curve is predicted based on CPFEM, where the simulation results are in good agreement with the experimental ones. Therefore, CPFEM is a powerful candidate for capturing the texture evolution and clarifying the inhomogeneous plastic deformation of polycrystalline Cu. The simulation results indicate that the <110> fiber texture is generated finally with the progression of plastic deformation. The inhomogeneous distribution of rotation angles lays the foundation for the inhomogeneous deformation of polycrystalline Cu in terms of grain scale.
文摘The predictive capacity of numerical analyses in geotechnical engineering depends strongly on the efficiency of constitutive models used for modeling of interfaces behavior.Interfaces are considered as thin layers of the soil adjacent to structures boundary whose major role is transferring loads from structures to soil masses.An interface model within the bounding surface plasticity framework and the critical state soil mechanics is presented.To this aim,general formulation of the interface model according to the bounding surface plasticity theory is described first.Similar to granular soils,it has been shown that the mechanical behavior of sand-structure interfaces is highly affected by the interface state that is the combined influences of density and applied normal stress.Therefore,several ingredients of the model are directly related to the interface state.As a result of this feature,the model is enabled to distinguish interfaces in dense state from those in loose state and to provide realistic predictions over wide ranges of density and normal stress values.In evaluation of the model,a reasonable correspondence between the model predictions and the experimental data of various research teams is found.
基金Project(07JJ3102) supported by Hunan Provincial Natural Science Foundation,ChinaProject(k0902132-11) supported by Changsha Municipal Science and Technology,China
文摘Based on the pseudo potential plane-wave method of density functional theory (DFT), Ti1-xNbxAk (x=0, 0.062 5, 0.083 3, 0.125, 0.250) crystals' geometry structure, elastic constants, electronic structure and Mulliken populations were calculated, and the effects of doping on the geometric structure, electronic structure and bond strength were systematically analyzed. The results show that the influence of Nb on the geometric structure is little in terms of the plasticity, and with the increase of Nb content, the covalent bond strength remarkably reduces, and Ti-Al, Nb-M (M=Ti, Al) and other hybrid bonds enhance; meanwhile, the peak district increases and the pseudo-energy gap first decreases and then increases, the overall band structure narrows, the covalent bond and direction of bonds reduce. The population analysis also shows that the results are consistent with the electronic structure analysis. The density of states of TiAINb shows that Nb doping can enhance the activity of Al and benefit the form of Al2O3 film. All the calculations reveal that the room temperature plasticity and the antioxidation properties of the compounds can be improved with the Nb content of 8.33%-12.5% (mole fraction).
基金financially supported by the National Natural Science Foundation of China ( 11872298, 11602191,11532009,11621062)the China Postdoctoral Science Foundation ( 2018M631141)the Fundamental Research Funds for the Central Universities ( Z201811336)
文摘This work identified the important role of matrix mechanical plasticity in mediating fibroblast activation.Many existing studies have highlighted the important effects of biochemical cues(e.g.,transforming growth factor-β1)and mechanicalstiffness on fibroblast activation.Our results indicated that self-assembled collagen hydrogels showed high plasticity and in which fibroblasts remain undifferentiated.However,when we decreased the plasticity of collagen hydrogels by increasing covalent crosslinking,fibroblasts showed a significant fibrotic response as reflected by the increasedα-SMA expression.Since the material systems we constructed have low and the same initial modulus,this process is stiffness independent.Although it has been reported that covalently crosslinked hydrogels are more difficult to degrade and matrix degradability has an important impact on cell behaviors,no significant changes of fibroblast activation were observed when proteases were broadly inhibited in our experiments.Importantly,the hydrogels we constructed showed similar plastic behaviors under creep and recovery tests compared to native normal and fibrotic tissues.These highlight the importance of matrix plasticity in mimicking the mechanical microenvironment of native fibrotic tissues.Mechanistically,we found that the enhanced fibroblast activation in low plastic matrix is mediated through integrin-actin pathway and nuclear localization of YAP.In high plastic collagen,matrix cannot provide effective resistance to actin contraction because of the rupture of weak crosslinks and the slippage of local fibers.On the contrary,in low plastic collagen,deformation energy can be stored in the network due to the existence of strong covalent crosslinks,thus enabling the build-up of cell traction and the formation of a robust cell-matrix interaction.Experiments of inhibiting or promoting cytoskeletal contractility and CGMD simulation both verified the above points.Our results clarify plasticity changes on the development of fibrotic diseases and highlight plasticity as an important mechanical cue in understanding cell-matrix interactions.
文摘OBJECTIVE Currently, almost all chemical compounds or biological reagents to reverse or slow down the AD process have failed in clinical trials. An integrative and multi-targeted strategy is increasingly appreciated to effectively combat this devastating disease. Traditional Chinese medicine(TCM) has been widely used for treatment of dementia, and thus the advantages of the potential therapeutic features of TCM treatment and associated mechanisms should be well taken. The Amnesia Remedy Formula(ARF) was invented by one of the most influential Master of TCM SUN Si-miao, who lived for about 100 year old. The aim of this research is to characterize the time course changes of the cognitive behaviors post a ARF, and the mechanism underlying the effects, focusing on PKA-centered signaling for both enhancement of neural plasticity and clearance of the phosphorylated Tau. RESULTS We tested the efficacy of ARF on two animal models of AD, and examine the central role of PKA signaling in the enhancement of neural plasticity via PKA/CREB/BDNF pathway as well as clearance of toxic p Tau via PKA/GSK3β/p Tau pathway. In the scopolamine model, ARF effectively reversed the memory in Morris water maze(MWM) test, with some features superior to anti-AD drug donepezil. In a battery test of MWM, novel object recognition or T maze in 5-month-old senescenceaccelerated mouse prone 8(SAMP8) strain mice, two weeks of administration of ARF showed overall better improvement in memory loss than donepezil, and the effect lasted for at least 1 week after termination of administration of the formula. ARF increased expression of PKA/CREB/BDNF and synaptic proteins PSD95 expression, as well as enhanced Ser9 phosphorylation of GSK3β, thus reduced p Tau in the hippocampus. Blockade of PKA signaling blunted the anti-AD-like effect of ARF, with reversal of CREB/BDNF signaling. Transcriptomic analysis indicated some changes of novel molecules along this pathway may be part of the pathological and therapeutic mechanism, which warrants further investigation. CONCLUSION ARF may display some advantageous features in treating AD with early onset, via multi-targeted manner including enhancement of neural plasticity and reduction in Tau toxicity.
基金the National Natural Science Foundation of China(82001190)Natural Sci⁃ence Foundation of Shandong Province(ZR2021LZY016)+1 种基金Natural Science Foundation of Shandong Province(ZR2020MH348)Science and Technology Foundation of Shandong Traditional Chinese Medicine(2020Q035)。
文摘OBJECTIVE To investigate whether electroacupuncture(EA)ameliorates abnormal trigeminal neuralgia(TN)orofacial pain and anxiety-like behavior by altering synaptic plasticity in the hippocampus CA1.METHODS A mouse infraorbital nerve transection model(pTION)of neuropathic pain was established,and EA or sham EA was used to treat ipsilateral acu⁃puncture points(GV20-Baihui and ST7-Xia⁃guan).Golgi-Cox staining and transmission elec⁃tron microscopy(TEM)were administrated to observe the changes of synaptic plasticity in the hippocampus CA1.RESULTS Stable and persistent orofacial allodynia and anxiety-like behav⁃iors induced by pT-ION were related to changes in hippocampal synaptic plasticity.Golgi stain⁃ings showed a decrease in the density of dendritic spines,especially mushroom-type dendritic spines,in hippocampal CA1 neurons of pT-ION mice.TEM results showed that the density of synapses,membrane thickness of the postsynaptic density,and length of the synaptic active zone were decreased,whereas the width of the synaptic cleft was increased in pTION mice.EA attenu⁃ated pT-ION-induced orofacial allodynia and anx⁃iety-like behaviors and effectively reversed the abnormal changes in dendritic spines and syn⁃apse of the hippocampal CA1 region.CONCLU⁃SION EA modulates synaptic plasticity of hippo⁃campal CA1 neurons,and reduces abnormal oro⁃facial pain and anxiety-like behavior,providing evidence for a TN treatment strategy.
文摘Compaction processes are one the most important par ts of powder forming technology. The main applications are focused on pieces for a utomotive, aeronautic, electric and electronic industries. The main goals of the compaction processes are to obtain a compact with the geometrical requirements, without cracks, and with a uniform distribution of density. Design of such proc esses consist, essentially, in determine the sequence and relative displacements of die and punches in order to achieve such goals. A.B. Khoei presented a gener al framework for the finite element simulation of powder forming processes based on the following aspects; a large displacement formulation, centred on a total and updated Lagrangian formulation; an adaptive finite element strategy based on error estimates and automatic remeshing techniques; a cap model based on a hard ening rule in modelling of the highly non-linear behaviour of material; and the use of an efficient contact algorithm in the context of an interface element fo rmulation. In these references, the non-linear behaviour of powder was adequately desc ribed by the cap plasticity model. However, it suffers from a serious deficiency when the stress-point reaches a yield surface. In the flow theory of plasticit y, the transition from an elastic state to an elasto-plastic state appears more or less abruptly. For powder material it is very difficult to define the locati on of yield surface, because there is no distinct transition from elastic to ela stic-plastic behaviour. Results of experimental test on some hard met al powder show that the plastic effects were begun immediately upon loading. In such mater ials the domain of the yield surface would collapse to a point, so making the di rection of plastic increment indeterminate, because all directions are normal to a point. Thus, the classical plasticity theory cannot deal with such materials and an advanced constitutive theory is necessary. In the present paper, the constitutive equations of powder materials will be discussed via an endochronic theory of plasticity. This theory provides a unifi ed point of view to describe the elastic-plastic behaviour of material since it places no requirement for a yield surface and a ’loading function’ to disting uish between loading an unloading. Endochronic theory of plasticity has been app lied to a number of metallic materials, concrete and sand, but to the knowledge of authors, no numerical scheme of the model has been applied to powder material . In the present paper, a new approach is developed based on an endochronic rate independent, density-dependent plasticity model for describing the isothermal deformation behavior of metal powder at low homologous temperature. Although the concept of yield surface has not been explicitly assumed in endochronic theory, it is shown that the cone-cap plasticity yield surface (Fig.1), which is the m ost commonly used plasticity models for describing the behavior of powder materi al can be easily derived as a special case of the proposed endochronic theory. Fig.1 Trace of cone-cap yield function on the meridian pl ane for different relative density As large deformation is observed in powder compaction process, a hypoelastic-pl astic formulation is developed in the context of finite deformation plasticity. Constitutive equations are stated in unrotated frame of reference that greatly s implifies endochronic constitutive relation in finite plasticity. Constitutive e quations of the endochronic theory and their numerical integration are establish ed and procedures for determining material parameters of the model are demonstra ted. Finally, the numerical schemes are examined for efficiency in the model ling of a tip shaped component, as shown in Fig.2. Fig.2 A shaped tip component. a) Geometry, boundary conditio n and finite element mesh; b) density distribution at final stage of
文摘The distribution of shear stress on the cross-section of plastic metal solid circular shaft under pure torsion yielding, the applicability of complete plastic model assumption and the shear stress formula were researched. Based on the shear stress formula of circular shaft under pure torsion in elastic stage, the formula of torque in elastic stage and the definition of yield, it is obtained that the yielding stage of plastic metal shaft under pure torsion is only a surface phenomenon of torque-torsion angle relationship, and the distribution of shear stress is essentially different from that of tensile stress when yielding under uniaxial tension. The pure torsion platform-torsion angle and the shape of torque-torsion angle curve cannot change the distribution of shear stress on the shaft cross-section. The distribution of shear stress is still linear with the maximum shear stress ts. The complete plasticity model assumption is not in accordance with the actual situation of shaft under torsion. The experimental strength data of nine plastic metals are consistent with the calculated results of the new limiting strain energy strength theory (LSEST). The traditional yield stress formula for plastic shaft under torsion is reasonable. The shear stress formula based on the plane assumption in material mechanics is applicable for all loaded stages of torsion shaft.
文摘[Objective]The work is devoted to the study of irreversible deformation of artificial samples subjected to a set of standard experiments,with an aim to study their mechanical properties.The principal idea of the study is related to the preparation of an artificial material with an established constitutive behavior model.The existence of such a well-described material provides future opportunities to conduct controllable experiments on various mechanical processes in rock-like material for further development and validation of theoretical models used in rock mechanics.[Methods]A set of artificial samples was prepared for careful assessment through a number of loading tests.Experimental work was carried out to determine the rheological properties under conditions of triaxial compression tests and uniaxial tension.Triaxial loading tests are completed for 9 samples with varying radial stress levels(0-5 MPa).The samples are loaded up to the yield point with control of radial and volumetric strain.The experimental results,which contain the obtained interrelationships between axial and radial stresses and strains,are analyzed using the Drucker-Prager yield surface.Material hardening is taken into account through the non-associated plastic flow law with the cap model.Numerical modeling of sample loading is performed through the finite difference method.Mathematical model parameters are adjusted to minimize the discrepancy between numerical modeling results and experimental data.The design of a series of experimental studies necessary to determine all the parameters of the model has been studied.[Results]It is shown that the formulated mathematical model allows to reliably reproduce the inelastic behavior of the studied material,and it can be used to solve a set of applied problems in continuum mechanics,the problem of numerical simulation of hydraulic fracture growth in an elastoplastic medium in particular.It was found that for the entire range of applied lateral loads(0-5 MPa),the elastic limit varied from 2 to 4 MPa,after which the material began to behave plastically.It was also determined that at lateral loads≥3 MPa,compaction began to appear in the material beyond the yield point.Judging by the dependence of volumetric strains under a lateral load equal to 1.4 MPa,compaction should begin to appear even at lateral loads lower than 3 MPa.[Conclusion]Taking the plastic behavior of the material into account is necessary when moving on to modeling the hydraulic fracturing process in such a material,and the resultant plasticity parameters for the model material can be used for numerical modeling of elastoplastic deformation of the rock under consideration,including processes such as hydraulic fracture growth in a poroelastoplastic medium.[Significance]The suggested procedure to interpret results of experimental studies can be used for further numerical modeling of mechanical processes in rock masses with inelastic strain accumulation.This opportunity can increase the reliability of geomechanical models used for the optimization of hydrocarbon fields development.
基金Project(52474418)supported by the National Natural Science Foundation of ChinaProject(YDZJSX2022A012)supported by the Central Guiding Local Science and Technology Development Foundation,China。
文摘The research demonstrated that laser powder bed fusion(LPBF)coupled with controlled annealing at 1200°C,could significantly increase the proportion of coincidence site lattice(CSL)grain boundary,thereby achieving an outstanding synergy of enhanced strength and exceptional ductility.The plastic deformation behavior,strain hardening behavior,and fracture behavior of LPBF 316L steel annealing at 1200℃for 20 h were studied through quasi-in-situ tensile process.It was found that LPBF 316L steel formed a certain proportion of deformation twins during the tensile process,and the formation of twins changed the crystal orientation,thus promoting further slip and crystal deformation.The synergistic effect of slip and twin promoted higher plasticity.LPBF process coupled with controlled annealing at 1200°C for 20 h leads to a ultimate tensile strength of 613 MPa and total elongation of 73.8%.
基金supported by the National Natural Science Foundation of China(12402444)。
文摘A new dimensionless number is proposed for dynamic plastic deformation analysis of clamped circular plates under underwater explosion loads by introducing dimensional analysis method to the basic dynamical governing equations of circular plates.The relation between dimensionless final plastic deformation of circular plates and the new dimensionless number is established based on massive underwater explosion test data.Meanwhile,comparative analysis was discussed with two other published dimensionless parameters which indicated the new dimensionless number proposed in this paper is more effective and extensive to predict the dynamic plastic response of circular plates under underwater explosion condition.
基金financially supported by the Fundamental Research Funds for the Central Universities,Sun Yat-sen University(Grant No.24qnpy041)the Science and Technology Innovation Key R&D Program of Chongqing(Grant No.CSTB2023TIAD-STX0030)。
文摘The electric vertical takeoff and landing(e VTOL)aircraft shows great potential for rapid military personnel deployment on the battlefield.However,its susceptibility to control loss,complex crashes,and extremely limited bottom energy-absorbing space demands higher comprehensive crashworthiness of its subfloor thin-walled structures.This study investigated the energy absorption capacity of novel concave polygonal carbon fiber reinforced plastics(CFRP)tubes under multi-angle collisions.Quasistatic compression experiments and finite element simulations were conducted to assess the failure mode and energy absorption.The influences of cross-section shapes,loading conditions,and geometry parameters on crashworthiness metrics were further analyzed.The results revealed that,under the similar weight,concave polygonal tubes exhibited superior energy absorption under axial loads compared to regular polygonal and circular tubes,attributed to the increased number of axial splits.However,both regular and concave polygonal tubes,particularly the latter,demonstrated reduced oblique energy absorption compared to traditional square tubes with the increasing ratio of SEA value decreased from 20%-16%.Notably,this reduction in energy absorption can be compensated for by the implementation of inward and outward crusher plugs,and with them,the concave polygonal tubes demonstrated outstanding overall crashworthiness performance under multiple loading conditions.This concave cross-sectional design methods could serve as a guidance for the development of the eVTOL subfloor.
基金the support of this research from the Serbian Ministry of Education,Science and Technological Development(Grant No.451-03-68/2023-14/200325)Ministry of Defense(Grant No.VA-TT/1/22-24)。
文摘Conventional plasticizers deteriorate mechanical and viscoelastic properties of the propellants due to their migration upon aging and long-term storage,which affects reliability and safety properties during exploitation.To address this issue,conventional plasticizer,dioctyl adipate(DOA),is replaced by reactive one,castor oil(CO).In addition,three different types of HTPB were used to obtain propellants with designed viscoelastic and mechanical properties.The CO increased propellants viscosity,without a significant impact on the propellant processability,regardless to the type of prepolymer.Conversely,mechanical properties were different depending on the type of resin,which were further analyzed by gel permeation chromatography(GPC).Addition of CO formed a denser polymer network and shifted T_(g) to higher values,compared to the compositions with DOA.The tensile strength of CO-containing propellants was lower at +20℃ and +50℃ compared to the reference compositions,while the strain at maximum load and strain at break were significantly increased with pronounced plastic deformation,especially for samples at -30℃.The inclusion of CO in the propellants composition gives more room for adjusting a wide range of mechanical properties.
文摘In this work,a Cu-10Ta alloy with a copper to tantalum mass ratio of 9:1 is prepared using powder metallurgy technology.Physical properties of the alloy,including density,microstructure,melting point,and constant-volume specific heat,are tested.Via the split Hopkinson pressure bar(SHPB)and flyerplate impact experiments,the relationship between equivalent stress and equivalent plastic strain of the material is studied at temperatures of 298-823 K and under strain rates of 1×10^(-3)-5.2×10^(3)s^(-1),and the Hugoniot relationship at impact pressures of 1.46-17.25 GPa and impact velocities of 108-942 m/s is obtained.Evolution of the Cu-10Ta microstructure that occurs during high-strain-rate impact is analyzed.Results indicate that the Cu-10Ta alloy possesses good thermal stability,and at ambient temperatures of up to 50%its melting point,stress softening of less than 15%of the initial strength is observed.A modified J-C constitutive model is employed to accurately predict the variation of yield strength with strain rate.Under strong impact,the copper phase is identified as the primary source of plastic deformation in the Cu-10Ta alloy,while significant deformation of the high-strength tantalum particles is less pronounced.Furthermore,the longitudinal wave speed D is found to correlate linearly with the particle velocity u upon strong impact.Analysis reveals that the sound speed and spallation strength of the alloy increase with increasing impact pressure.
文摘OBJECTIVE Major depressive disorder(MDD) is a common mental illness,which shows serious dysfunction in emotion,motivation and cognition. The imbalance of monoamine neurotransmitter is the classic pathogenesis of depression,but more and more evidence indicates that glutamatergic transmission may be the key factor leading to the occurrence of depression. However,the role of the membrane expression and regulation of glutamate receptors in the development of depression has not been elucidated. To address this issue,we have done series of experiments. METHODS Different methods and techniques,such as behavior,morphology,molecular biology and electrophysiology,were applied to investigate the impact of glutamate receptors and their subunits in the regulation of synaptic plasticity and the mechanism in depressive animal models. RESULTS Chronic social defeat stress(CSDS) can induce depressive behaviors in wildtype(WT) mice but not caspase-1 knockout(KO) mice. Further experiments showed that,in WT mice,CSDS induced a significant decrease in the membrane expression levels of the GluR1 and GluR2 subunits of AMPA receptors,the amplitudes of m EPSC in hippocampal CA1,meanwhile the long-term potentiation(LTP) at hippocampus SC-CA1 pathway was also impaired. Oppositely,this CSDS-induced reduction of the membrane expression of AMPA receptors was prevented by the knockout of caspase-1 or caspase-1 inhibitor,in which the expression of GluA1 and GluA2 were upregulated from(60.2±3.4)% and(63.9±3.7)% to(120.1±5.9)%and(112.6±9.6)%,respectively,while the total protein level of AMPA receptor subunits were not affected.On the other hand,a chronic intracerebroventricular injection of IL-1β,a downstream signal molecule of caspase-1,could induce depression-and anxiety-like behaviors in caspase-1 KO mice. CONCLUSION The caspase-1 can mediate the stress-induced depression-like behaviors by down-regulation of the membrane expression of AMPA receptors in hippocampus,the inhibition or knock-out of caspase-1can increase the expression of AMPA receptors in the membrane,thus reversing the depression-like behavior. Caspase-1 may serve as new target for depression therapy.
基金supported by Chongqing Research Program of Basic Research and Frontier Technology (No.cstc2013jcyj A70004)Scientific and Technological Research Program of Chongqing Municipal Education Commission (No.KJ1501314 )Chongqing University of Science & Technology (No.CK2014Z27)
文摘A method was established for determination of the reducing substances released from plastic blood bags to anticoagulant.The samples were extracted with a solid-phase extraction procedure using dichloromethane as extract solvents.The extracts were measured with GC-MS.Several reducing substances,such as 1,2-benzenedicarboxylic acid,alkane and bis(2-ethylhexyl) phthalate,etc were found in anticoagulant.The method was simple and can be used for the quality control of plastic blood bags.
文摘Brominated flame-retardant,such as deca-BDE,TBBP-A,TBBP-A-bis is one kind of the additives of plastic product for flame retardation.European has published a direction to restrict the used amount of brominated flame-retardant,because of their toxicity.The present work reports a GC-MS method for the determination of the brominated retardants.The method meets the requirements of the direction 2002/95/EC,and has been applied to the real sample analysis.