Plasmon induced transparency(PIT)in the transparent window provides new insights into the design of optical filters,switches and storage,and integrated optics.The slow light effect makes PIT applicable to both sensors...Plasmon induced transparency(PIT)in the transparent window provides new insights into the design of optical filters,switches and storage,and integrated optics.The slow light effect makes PIT applicable to both sensors and slow light devices.Besides,PIT can overcome the diffraction limit of light,which makes it possible to manipulate light on a half-wavelength scale and brings good news to the miniaturization of optical devices.In this paper,we first summarize the researches of PIT phenomenon based on metal-dielectric-metal(MDM)waveguide systems and analyze the physical mechanisms of PIT including bright-dark mode interactions and phase-coupling-induced transparency.Then,we review the applications of PIT in optical sensing,optical filtering,optical switching,slow light devices and optical logic devices.At last,we outline important challenges that need to be addressed,provide corresponding solutions and predict important directions for future research in this area.展开更多
In this paper,we demonstrate an auto accurate alignment method to align mask-substrate in the prototype of plasmonic lithography(PL),which is essential for multilayer nanostructure fabrication with high resolution,low...In this paper,we demonstrate an auto accurate alignment method to align mask-substrate in the prototype of plasmonic lithography(PL),which is essential for multilayer nanostructure fabrication with high resolution,low cost,high efficiency,and high throughput,such as circuit manufacturing and other applications.We obtained an alignment signal with sensitivity better than 20 nm by using the Moiréfringe image.However,only using the Moiréfringes cannot guarantee the alignment of the mask and the substrate because the Moiréfringe repeats itself when the mask and substrate are offset by a fixed displacement.To eliminate the ambiguity,boxes and the crosses alignment marks are designed beside the grating marks on the substrate and the mask,respectively.A two-step alignment scheme including coarse alignment and fine alignment is explored in the auto alignment system.In the stage of coarse alignment,the edge detection algorithm based on Canny operator is adopted to detect the edges image effectively.In the process of fine alignment,Fourier transform based on Moiréfringe image is obtained to improve the alignment accuracy.In addition,experimental results of overlay indicate that PL can obtain sub-100 nm alignment accuracy over an area of 1 cm^2 using the proposed two-step alignment scheme.Via the substrate-mask mismatch compensation,better stages and precise environment control,it is expected that much higher overlay accuracy is feasible.展开更多
To perform the mechanism study of special association for vancomycin and D-Ala-D-Ala-containing peptides on the interface of solution and self-assemble monolayer, the binding between vancomycin and pentapeptide (Lys-...To perform the mechanism study of special association for vancomycin and D-Ala-D-Ala-containing peptides on the interface of solution and self-assemble monolayer, the binding between vancomycin and pentapeptide (Lys-Lys-Gly-D-Ala-D-Ala) was investigated by flow injection surface plasmon resonance (FI-SPR) and flow injection quartz crystal microbalance (FI-QCM). To facilitate the formation of a compact vancomycin adsorbates layer with a uniform surface orientation, vancomycin molecules were attached onto a preformed alkanethiol self-assembled monolayer. By optimizing the conditions for the binding between Lys-Lys-Gly-D-Ala-D-Ala and vancomycin on the assembled chip, the detecting limit of Lys-Lys-Gly-D-Ala-D-Ala was greatly improved (reaching 0.5 ×10^- 6 mol/L or 7.5 × 10^-12 mol). The equilibrium constant of the association of Lys-Lys-Gly-D-Ala-D-Ala with vancomycin was also obtained (KAds=5.0×10^4 L/tool).展开更多
Perception of color with our eyes is one of the major sources of information that we gain from our surround-ings.The color of an object depends on which portion of light(range of wavelengths)reaches our eyes.In nature...Perception of color with our eyes is one of the major sources of information that we gain from our surround-ings.The color of an object depends on which portion of light(range of wavelengths)reaches our eyes.In nature,struc-tura1 colors are often caused by the interaction of light with dielectric structures whose dim ensions are on the order of visible-light wavelengths.For example,in beetles,the color is originated from the microstructure of the skin which is acting as scattering center;while in some butterflies,the colorful patterns are routed from the reflection from the top of the wings.Different optical interactions,including multilayer interference,light scattering and photonic crystal eflfect,give rise to selective transmission or reflection of particular light wavelengths.which leads to the generation of structural colors.W ith the consumption of dyes and pigments,recycling of colored discarded m aterials has been a very difficult issue because of the hardships in relation to the dissociation of diverse chemica1 compounds present in the colorant agents.Plasmonic colors therefore draw attention as they enable generation of vivid colors only by geometrical arrange-ment of m etals which not only eases the recycling but also enhances the chemical stability of the colors.Plasm onic colors are structural colors that originate from the interaction between light and metallic nanostructures.Rapid development in nanofabrication and characterization of plasmonic structures provides an efficient way to control light properties at subwavelength scale,which can generate plasmonic structural colors.The engineering of plasmonic colors is a promising rapidly em erging research field that could have a large technological impact.Artiflcia1 surfaces,in particular,on which the colors are generated via a resonant interaction between light and subwavelength metallic nanostructures,have emerged as nanomaterials or metam aterials for the realization of structura1 colors.Here we introduce several representa-tive plasmonic nanostructures which can generate visible structural colors,including nanogratings,perforated metallic film s,metal-insulator-meta1 resonators,dynamically tunable color generators and perfect absorbers.w e highlight the properties of plasmonic colors and discuss the intrinsic plasmonic resonance m echanism s.Plasmonic structural colors have features of sub-diffraction localization,high-fidelity color rendering and rapid responses of external changes,which are believed to offer a promising future in the applications including ultra-high resolution color displaB spectral filtering and sensing,holography,three-dimensiona1 stereoscopic imaging and real-time colors controlling with extremely com-pact device architectures.展开更多
A single metallic nanoslit is employed for investigating the contribution of Surface Plasmon Polaritons(SPPs) to Extraordinary Optical Transmission(EOT) based on rigorous electromagnetic theory and the Spectrum Analys...A single metallic nanoslit is employed for investigating the contribution of Surface Plasmon Polaritons(SPPs) to Extraordinary Optical Transmission(EOT) based on rigorous electromagnetic theory and the Spectrum Analysis Method(SAM). Numerical results shows that the SPP is the main factor responsible for the EOT, and a phase singularity is observed.展开更多
A high spatial resolution, phase-sensitive Surface Plasmon Resonance(SPR) sensor based on Extraordinary Optical Transmission(EOT) is proposed to monitor the binding of organic and biological molecules to the silver su...A high spatial resolution, phase-sensitive Surface Plasmon Resonance(SPR) sensor based on Extraordinary Optical Transmission(EOT) is proposed to monitor the binding of organic and biological molecules to the silver surface. The 2D nanohole-array configuration is well suited for dense integration in a sensor chip. The optical geometry is collinear, which simplifies the alignment with respect to the traditional Kretschmann arrangement for SPR sensing. Various design parameters of the device have been studied by simulation. The heterodyne technique is used to improve the sensitivity. The optimization results indicate that the sensor has the advantages of achieving high resolution and a wide dynamic range simultaneously.展开更多
In this paper,we propose an RLC equivalent circuit model theory which can accurately predict the spectral response and resonance characteristics of metamaterial absorption structures,extend its design,and characterize...In this paper,we propose an RLC equivalent circuit model theory which can accurately predict the spectral response and resonance characteristics of metamaterial absorption structures,extend its design,and characterize the parameters of the model in detail.By employing this model,we conducted computations to characterize the response wavelength and bandwidth of variously sized metamaterial absorbers.A comparative analysis with Finite Difference Time Domain(FDTD)simulations demonstrated a remarkable level of consistency in the results.The designed absorbers were fabricated using micro-nano fabrication processes,and were experimentally tested to demonstrate absorption rates exceeding 90%at a wavelength of 9.28μm.The predicted results are then compared with test results.The comparison reveals good consistency in two aspects of the resonance responses,thereby confirming the rationality and accuracy of this model.展开更多
Metal nanoparticles with high surface area and high electrochemical activity exhibit excellent catalytic performance in the photocatalytic reduction of carbon dioxide(CO_(2)).However,poor stability,small specific surf...Metal nanoparticles with high surface area and high electrochemical activity exhibit excellent catalytic performance in the photocatalytic reduction of carbon dioxide(CO_(2)).However,poor stability,small specific surface area,and less active sites limits its solar energy utilization.Hydrothermal method was utilized to synthesize the bimetallic material of Cu_(x)Co_(1-x)in this work.Co was loaded onto the Cu surface due to the electrons generated by the surface plasmon resonance(SPR)effect occurring on the Cu surface.Cu_(x)Co_(1-x)exhibits high photocatalytic conversion of CO_(2)efficiency under irradiation,which mainly because the Co nanoparticles on the surface of Cu can be used as cocatalysts to enhance the photocharge transfer.Cu_(0.6)Co_(0.4)exhibits the comparatively best photocatalytic conversion efficiency of CO_(2)in the first 6 h light irradiation.The yields of CO and CH_(4)reached 35.26 and 2.71μmol/(g·h),respectively.Upon illumination,electrons were produced,with the majority of them moving towards the interface.This movement contributes to the increased lifetime of photogenerated electron-hole pairs,which in turn boosts the photocatalytic efficiency.The findings of this research provide significant insights for creating photocatalysts that are both highly effective and stable in CO_(2)reduction processes.展开更多
In recent years,chiral inorganic nanomaterials have become promising candidates for applications in sensing,catalysis,biomedicine,and photonics.Plasmonic nanomaterials with an intrinsic chiral structure exhibit intrig...In recent years,chiral inorganic nanomaterials have become promising candidates for applications in sensing,catalysis,biomedicine,and photonics.Plasmonic nanomaterials with an intrinsic chiral structure exhibit intriguing geometry‑dependent optical chirality,which benefits the combination of plasmonic characteristics with chirality.Recent advances in the biomolecule‑directed geometric control of intrinsically chiral plasmonic nanomaterials have further provided great opportunities for their widespread applications in many emerging technological areas.In this review,we present the recent progress in biosensing using chiral inorganic nanomaterials,with a particular focus on electrochemical and enzyme‑mimicking catalytic approaches.This paper commences with a review of the basic tenets underlying chiral nanocatalysts,incorporating the chiral ligand‑induced mechanism and the architectures of intrinsically chiral nanostructures.Additionally,it methodically expounds upon the applications of chiral nanocatalysts in the realms of electrochemical biosensing and enzyme‑mimicking catalytic biosensing respectively.Conclusively,it proffers a prospective view of the hurdles and prospects that accompany the deployment of chiral nanoprobes for nascent biosensing applications.By rational design of the chiral nanoprobes,it is envisioned that biosensing with increasing sensitivity and resolution toward the single‑molecule level can be achieved,which will substantially promote sensing applications in many emerging interdisciplinary areas.展开更多
本研究采用表面等离子体共振技术,以血管紧张素转换酶(angiotensin I converting enzyme,ACE)为蛋白配体,分析马氏珠母贝肉蛋白酶解产物(protein hydrolysate of Pinctada martensii,PHPM)超滤组分与配体的结合情况,利用质谱鉴定结合肽...本研究采用表面等离子体共振技术,以血管紧张素转换酶(angiotensin I converting enzyme,ACE)为蛋白配体,分析马氏珠母贝肉蛋白酶解产物(protein hydrolysate of Pinctada martensii,PHPM)超滤组分与配体的结合情况,利用质谱鉴定结合肽段的氨基酸序列后,筛选潜在抑制ACE活性强的肽段进行合成,研究其体外ACE抑制活性、抑制类型及多肽与ACE蛋白的相互作用。结果显示,PHPM分子质量在3 000~5 000 Da的超滤组分与ACE蛋白具有较强的结合信号,在结合物质的肽序列中优选出4种具有潜在活性的ACE抑制肽进行合成,其中多肽SLPWPMKPMNLIE的半数抑制浓度最低,并且通过氢键与ACE蛋白C端结构域的疏水口袋结合。展开更多
基金Project(2018JJ4086)supported by the Natural Science Foundation of Hunan Province,ChinaProject(520)supported by the Training and Innovation Base for Graduate of Education Department of Hunan Province,China+1 种基金Project(201802368048)supported by Industry-University Cooperation and Education Project of National Education Department,ChinaProject(CSUZC201925)supported by the Open Sharing Fund for the Large-scale Instruments and Equipments of Central South University,China。
文摘Plasmon induced transparency(PIT)in the transparent window provides new insights into the design of optical filters,switches and storage,and integrated optics.The slow light effect makes PIT applicable to both sensors and slow light devices.Besides,PIT can overcome the diffraction limit of light,which makes it possible to manipulate light on a half-wavelength scale and brings good news to the miniaturization of optical devices.In this paper,we first summarize the researches of PIT phenomenon based on metal-dielectric-metal(MDM)waveguide systems and analyze the physical mechanisms of PIT including bright-dark mode interactions and phase-coupling-induced transparency.Then,we review the applications of PIT in optical sensing,optical filtering,optical switching,slow light devices and optical logic devices.At last,we outline important challenges that need to be addressed,provide corresponding solutions and predict important directions for future research in this area.
基金supported by the 973 Program of China (2013CBA01700)the National Natural Science Funds (61138002)
文摘In this paper,we demonstrate an auto accurate alignment method to align mask-substrate in the prototype of plasmonic lithography(PL),which is essential for multilayer nanostructure fabrication with high resolution,low cost,high efficiency,and high throughput,such as circuit manufacturing and other applications.We obtained an alignment signal with sensitivity better than 20 nm by using the Moiréfringe image.However,only using the Moiréfringes cannot guarantee the alignment of the mask and the substrate because the Moiréfringe repeats itself when the mask and substrate are offset by a fixed displacement.To eliminate the ambiguity,boxes and the crosses alignment marks are designed beside the grating marks on the substrate and the mask,respectively.A two-step alignment scheme including coarse alignment and fine alignment is explored in the auto alignment system.In the stage of coarse alignment,the edge detection algorithm based on Canny operator is adopted to detect the edges image effectively.In the process of fine alignment,Fourier transform based on Moiréfringe image is obtained to improve the alignment accuracy.In addition,experimental results of overlay indicate that PL can obtain sub-100 nm alignment accuracy over an area of 1 cm^2 using the proposed two-step alignment scheme.Via the substrate-mask mismatch compensation,better stages and precise environment control,it is expected that much higher overlay accuracy is feasible.
基金Projects(20773165,20876179) supported by the National Natural Science Foundation of ChinaProject(09JJ1002) supported by the Hunan Provincial Natural Science Foundation,China+1 种基金Project(NCET-07-0865) for New Century Excellent Talents in Chinese UniversityProject(2007AA022006) supported by the National High Technology Research and Development Program of China
文摘To perform the mechanism study of special association for vancomycin and D-Ala-D-Ala-containing peptides on the interface of solution and self-assemble monolayer, the binding between vancomycin and pentapeptide (Lys-Lys-Gly-D-Ala-D-Ala) was investigated by flow injection surface plasmon resonance (FI-SPR) and flow injection quartz crystal microbalance (FI-QCM). To facilitate the formation of a compact vancomycin adsorbates layer with a uniform surface orientation, vancomycin molecules were attached onto a preformed alkanethiol self-assembled monolayer. By optimizing the conditions for the binding between Lys-Lys-Gly-D-Ala-D-Ala and vancomycin on the assembled chip, the detecting limit of Lys-Lys-Gly-D-Ala-D-Ala was greatly improved (reaching 0.5 ×10^- 6 mol/L or 7.5 × 10^-12 mol). The equilibrium constant of the association of Lys-Lys-Gly-D-Ala-D-Ala with vancomycin was also obtained (KAds=5.0×10^4 L/tool).
文摘Perception of color with our eyes is one of the major sources of information that we gain from our surround-ings.The color of an object depends on which portion of light(range of wavelengths)reaches our eyes.In nature,struc-tura1 colors are often caused by the interaction of light with dielectric structures whose dim ensions are on the order of visible-light wavelengths.For example,in beetles,the color is originated from the microstructure of the skin which is acting as scattering center;while in some butterflies,the colorful patterns are routed from the reflection from the top of the wings.Different optical interactions,including multilayer interference,light scattering and photonic crystal eflfect,give rise to selective transmission or reflection of particular light wavelengths.which leads to the generation of structural colors.W ith the consumption of dyes and pigments,recycling of colored discarded m aterials has been a very difficult issue because of the hardships in relation to the dissociation of diverse chemica1 compounds present in the colorant agents.Plasmonic colors therefore draw attention as they enable generation of vivid colors only by geometrical arrange-ment of m etals which not only eases the recycling but also enhances the chemical stability of the colors.Plasm onic colors are structural colors that originate from the interaction between light and metallic nanostructures.Rapid development in nanofabrication and characterization of plasmonic structures provides an efficient way to control light properties at subwavelength scale,which can generate plasmonic structural colors.The engineering of plasmonic colors is a promising rapidly em erging research field that could have a large technological impact.Artiflcia1 surfaces,in particular,on which the colors are generated via a resonant interaction between light and subwavelength metallic nanostructures,have emerged as nanomaterials or metam aterials for the realization of structura1 colors.Here we introduce several representa-tive plasmonic nanostructures which can generate visible structural colors,including nanogratings,perforated metallic film s,metal-insulator-meta1 resonators,dynamically tunable color generators and perfect absorbers.w e highlight the properties of plasmonic colors and discuss the intrinsic plasmonic resonance m echanism s.Plasmonic structural colors have features of sub-diffraction localization,high-fidelity color rendering and rapid responses of external changes,which are believed to offer a promising future in the applications including ultra-high resolution color displaB spectral filtering and sensing,holography,three-dimensiona1 stereoscopic imaging and real-time colors controlling with extremely com-pact device architectures.
基金supported by the National Basic Research Program of China(Grant No.2006CB302901)the InnovationTeam Development Program of the Chinese Ministry of Education(Grant No.IRT0606)
文摘A single metallic nanoslit is employed for investigating the contribution of Surface Plasmon Polaritons(SPPs) to Extraordinary Optical Transmission(EOT) based on rigorous electromagnetic theory and the Spectrum Analysis Method(SAM). Numerical results shows that the SPP is the main factor responsible for the EOT, and a phase singularity is observed.
基金Supported by the funding from the Hong Kong Research Grants Council under CERG project 411907 and41228National Basis Research Program of China(973)(No.2009CB930600)
文摘A high spatial resolution, phase-sensitive Surface Plasmon Resonance(SPR) sensor based on Extraordinary Optical Transmission(EOT) is proposed to monitor the binding of organic and biological molecules to the silver surface. The 2D nanohole-array configuration is well suited for dense integration in a sensor chip. The optical geometry is collinear, which simplifies the alignment with respect to the traditional Kretschmann arrangement for SPR sensing. Various design parameters of the device have been studied by simulation. The heterodyne technique is used to improve the sensitivity. The optimization results indicate that the sensor has the advantages of achieving high resolution and a wide dynamic range simultaneously.
基金Supported by the National Natural Science Foundation of China(62174092)the Open Fund of State Key Laboratory of Infrared Physics(SITP-NLIST-ZD-2023-04)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB0580000)。
文摘In this paper,we propose an RLC equivalent circuit model theory which can accurately predict the spectral response and resonance characteristics of metamaterial absorption structures,extend its design,and characterize the parameters of the model in detail.By employing this model,we conducted computations to characterize the response wavelength and bandwidth of variously sized metamaterial absorbers.A comparative analysis with Finite Difference Time Domain(FDTD)simulations demonstrated a remarkable level of consistency in the results.The designed absorbers were fabricated using micro-nano fabrication processes,and were experimentally tested to demonstrate absorption rates exceeding 90%at a wavelength of 9.28μm.The predicted results are then compared with test results.The comparison reveals good consistency in two aspects of the resonance responses,thereby confirming the rationality and accuracy of this model.
基金supported by the Doctoral Research Start-up Project of Yuncheng University(YQ-2023067)Project of Shanxi Natural Science Foundation(202303021211189)+2 种基金Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Provinces(20220036)Shanxi Province Intelligent Optoelectronic Sensing Application Technology Innovation CenterShanxi Province Optoelectronic Information Science and Technology Laboratory,Yuncheng University。
文摘Metal nanoparticles with high surface area and high electrochemical activity exhibit excellent catalytic performance in the photocatalytic reduction of carbon dioxide(CO_(2)).However,poor stability,small specific surface area,and less active sites limits its solar energy utilization.Hydrothermal method was utilized to synthesize the bimetallic material of Cu_(x)Co_(1-x)in this work.Co was loaded onto the Cu surface due to the electrons generated by the surface plasmon resonance(SPR)effect occurring on the Cu surface.Cu_(x)Co_(1-x)exhibits high photocatalytic conversion of CO_(2)efficiency under irradiation,which mainly because the Co nanoparticles on the surface of Cu can be used as cocatalysts to enhance the photocharge transfer.Cu_(0.6)Co_(0.4)exhibits the comparatively best photocatalytic conversion efficiency of CO_(2)in the first 6 h light irradiation.The yields of CO and CH_(4)reached 35.26 and 2.71μmol/(g·h),respectively.Upon illumination,electrons were produced,with the majority of them moving towards the interface.This movement contributes to the increased lifetime of photogenerated electron-hole pairs,which in turn boosts the photocatalytic efficiency.The findings of this research provide significant insights for creating photocatalysts that are both highly effective and stable in CO_(2)reduction processes.
文摘In recent years,chiral inorganic nanomaterials have become promising candidates for applications in sensing,catalysis,biomedicine,and photonics.Plasmonic nanomaterials with an intrinsic chiral structure exhibit intriguing geometry‑dependent optical chirality,which benefits the combination of plasmonic characteristics with chirality.Recent advances in the biomolecule‑directed geometric control of intrinsically chiral plasmonic nanomaterials have further provided great opportunities for their widespread applications in many emerging technological areas.In this review,we present the recent progress in biosensing using chiral inorganic nanomaterials,with a particular focus on electrochemical and enzyme‑mimicking catalytic approaches.This paper commences with a review of the basic tenets underlying chiral nanocatalysts,incorporating the chiral ligand‑induced mechanism and the architectures of intrinsically chiral nanostructures.Additionally,it methodically expounds upon the applications of chiral nanocatalysts in the realms of electrochemical biosensing and enzyme‑mimicking catalytic biosensing respectively.Conclusively,it proffers a prospective view of the hurdles and prospects that accompany the deployment of chiral nanoprobes for nascent biosensing applications.By rational design of the chiral nanoprobes,it is envisioned that biosensing with increasing sensitivity and resolution toward the single‑molecule level can be achieved,which will substantially promote sensing applications in many emerging interdisciplinary areas.