A novel substrate integrated microstrip to ultra-thin cavity filter transition operating in the W-band is proposed in this letter.The structure is a new method of connecting microstrip circuits and waveguide filters,a...A novel substrate integrated microstrip to ultra-thin cavity filter transition operating in the W-band is proposed in this letter.The structure is a new method of connecting microstrip circuits and waveguide filters,and this new structure enables a planar integrated transition from microstrip lines to ultra-thin cavity filters,thereby reducing the size of the transition structure and achieving miniaturization.The structure includes a conventional tapered microstrip transition structure,which guides the electromagnetic field from the microstrip line to the reduced-height dielectric-filled waveguide,and an air-filled matching cavity which is placed between the dielectric-filled waveguide and the ultra-thin cavity filter.The heights of the microstrip line,the dielectric-filled waveguide and the ultra-thin cavity filter are the same,enabling seamless integration within a planar radio-frequency(RF)circuit.To facilitate testing,mature finline transition structures are integrated at both ends of the microstrip line during fabrications.The simulation results of the fabricated microstrip to ultra-thin cavity filter transition with the finline transition structure,with a passband of 91.5-96.5 GHz,has an insertion loss of less than 1.9 dB and a return loss lower than-20 dB.And the whole structure has also been measured which achieves an insertion loss less than 2.6 dB and a return loss lower than-15 dB within the filter's passband,including the additional insertion loss introduced by the finline transitions.Finally,a W-band compact up-conversion module is designed,and the test results show that after using the proposed structure,the module achieves 95 dBc suppression of the 84 GHz local oscillator.It is also demonstrated that the structure proposed in this letter achieves miniaturization of the system integration without compromising the filter performance.展开更多
The advancement of planar micro-supercapacitors(PMSCs)for micro-electromechanical systems(MEMS)has been significantly hindered by the challenge of achieving high energy and power densities.This study addresses this is...The advancement of planar micro-supercapacitors(PMSCs)for micro-electromechanical systems(MEMS)has been significantly hindered by the challenge of achieving high energy and power densities.This study addresses this issue by leveraging screen-printing technology to fabricate high-performance PMSCs using innovative composite ink.The ink,a synergistic blend of few-layer graphene(Gt),carbon black(CB),and NiCo_(2)O_(4),was meticulously mixed to form a conductive and robust coating that enhanced the capacitive performance of the PMSCs.The optimized ink formulation and printing process result in a micro-supercapacitor with an exceptional areal capacitance of 18.95 mF/cm^(2)and an areal energy density of 2.63μW·h/cm^(2)at a current density of 0.05 mA/cm^(2),along with an areal power density of 0.025 mW/cm^(2).The devices demonstrated impressive durability with a capacitance retention rate of 94.7%after a stringent 20000-cycle test,demonstrating their potential for long-term applications.Moreover,the PMSCs displayed excellent mechanical flexibility,with a capacitance decrease of only 3.43%after 5000 bending cycles,highlighting their suitability for flexible electronic devices.The ease of integrating these PMSCs into series and parallel configurations for customized power further underscores their practicality for integrated power supply solutions in various technologies.展开更多
In this paper,a linear optimization method(LOM)for the design of terahertz circuits is presented,aimed at enhancing the simulation efficacy and reducing the time of the circuit design workflow.This method enables the ...In this paper,a linear optimization method(LOM)for the design of terahertz circuits is presented,aimed at enhancing the simulation efficacy and reducing the time of the circuit design workflow.This method enables the rapid determination of optimal embedding impedance for diodes across a specific bandwidth to achieve maximum efficiency through harmonic balance simulations.By optimizing the linear matching circuit with the optimal embedding impedance,the method effectively segregates the simulation of the linear segments from the nonlinear segments in the frequency multiplier circuit,substantially improving the speed of simulations.The design of on-chip linear matching circuits adopts a modular circuit design strategy,incorporating fixed load resistors to simplify the matching challenge.Utilizing this approach,a 340 GHz frequency doubler was developed and measured.The results demonstrate that,across a bandwidth of 330 GHz to 342 GHz,the efficiency of the doubler remains above 10%,with an input power ranging from 98 mW to 141mW and an output power exceeding 13 mW.Notably,at an input power of 141 mW,a peak output power of 21.8 mW was achieved at 334 GHz,corresponding to an efficiency of 15.8%.展开更多
A 16-channel arrayed waveguide grating(AWG)with an 800 GHz channel spacing in the O-band has been developed and fabricated based on silica planar lightwave circuit(PLC)technology.By extending the wave⁃length allocatio...A 16-channel arrayed waveguide grating(AWG)with an 800 GHz channel spacing in the O-band has been developed and fabricated based on silica planar lightwave circuit(PLC)technology.By extending the wave⁃length allocation from 8 channels to 16 channels as specified in IEEE 802.3bs,we increased the number of chan⁃nels and boosted transmission capacity to meet the 1.6 Tbps and higher-speed signal transmission requirements for future data centers.Through optimizing the AWG structure,it has achieved insertion loss(IL)better than-1.61 dB,loss uniformity below 0.35 dB,polarization-dependent loss(PDL)below 0.35 dB,adjacent channel cross⁃talk under-20.05 dB,ripple less than 0.75 dB,center wavelength offset under 0.22 nm and 1 dB bandwidth ex⁃ceeding 2.88 nm.The AWG has been successfully measured to transmit 53 Gbaud 4-level pulse amplitude modu⁃lation(PAM4)signal per channel and the total transmission speed can reach over 1.6 Tbps.展开更多
Two-dimensional energetic materials(2DEMs),characterized by their exceptional interlayer sliding properties,are recognized as exemplar of low-sensitivity energetic materials.However,the diversity of available 2DEMs is...Two-dimensional energetic materials(2DEMs),characterized by their exceptional interlayer sliding properties,are recognized as exemplar of low-sensitivity energetic materials.However,the diversity of available 2DEMs is severely constrained by the absence of efficient methods for rapidly predicting crystal packing modes from molecular structures,impeding the high-throughput rational design of such materials.In this study,we employed quantified indicators,such as hydrogen bond dimension and maximum planar separation,to quickly screen 172DEM and 16 non-2DEM crystal structures from a crystal database.They were subsequently compared and analyzed,focusing on hydrogen bond donor-acceptor combinations,skeleton features,and intermolecular interactions.Our findings suggest that theπ-πpacking interaction energy is a key determinant in the formation of layered packing modes by planar energetic molecules,with its magnitude primarily influenced by the strongest dimericπ-πinteraction(π-π2max).Consequently,we have delineated a critical threshold forπ-π2max to discern layered packing modes and formulated a theoretical model for predictingπ-π2max,grounded in molecular electrostatic potential and dipole moment analysis.The predictive efficacy of this model was substantiated through external validation on a test set comprising 31 planar energetic molecular crystals,achieving an accuracy of 84%and a recall of 75%.Furthermore,the proposed model shows superior classification predictive performance compared to typical machine learning methods,such as random forest,on the external validation samples.This contribution introduces a novel methodology for the identification of crystal packing modes in 2DEMs,potentially accelerating the design and synthesis of high-energy,low-sensitivity 2DEMs.展开更多
The integration method of exploding foil initiator system(EFIs) used to be researched to broaden its application range in military and aerospace in the last few decades.In order to lower the firing voltage below 1 kV,...The integration method of exploding foil initiator system(EFIs) used to be researched to broaden its application range in military and aerospace in the last few decades.In order to lower the firing voltage below 1 kV,an integrated EFIs with enhanced energy efficiency was designed.Corresponding exploding foil initiator chips were fabricated in batch via micro electromechanical systems technology by integrating a unified foil,a flyer layer and a barrel on a glass substrate successively,meanwhile its package of the whole system was proposed at a volume of 2.194 cm^(3).The structural parameters were determined by predicted performance including flyer velocity,impact behavior and conduction property via the proposed theoretical models and the static electric field simulation.As expect,this integrated EFIs exhibited excellent functions,which could accelerate the flyer to a terminal velocity over 4 km/s and preeminently initiate HNS-IV pellet at a circuit of 0.24 μF/0.9 kV.Furthermore,the theoretical design,fabrication and performance test have been all included to validate the feasibility of this integrated EFIs that was beneficial for its commercial development in the future.展开更多
Diamond grits held in metal matrix(sintered or electroplated) are retained primary by mechanical locking.Because of this weak attachment,the pullouts of diamond from matrix are inevitable during the cutting process.Mo...Diamond grits held in metal matrix(sintered or electroplated) are retained primary by mechanical locking.Because of this weak attachment,the pullouts of diamond from matrix are inevitable during the cutting process.Moreover,the working grits have low protrusion heights,so the cutting speed of the tool is limited. Furthermore,the rubbing of metal matrix and the work object can cause thermal damages of diamond and other materials,and power increase for the operation. Diamond can be firmly held in a metal matrix by brazing.Because of the presence of strong chemical bonding,diamond grits can protrude twice as high without being knocked off from the matrix.As a result,the cutting speed of the tool may be doubled. When the braze melts,the carbide formers will migrate toward diamond to form carbide at the interface. This reaction may be excessive as to degrade diamond significantly.In this case,a coating on diamond may be needed to moderate the reaction. When diamond is brazed on the surface of a substrate,the melt tends to pull the grits closer together that may thicken the braze layer locally.The clustering of grits can reduce the cutting effectiveness of the diamond tool.A diamond grid design is necessary to maintain the uniform thickness of the braze layer.Moreover,the controlled melting of braze alloy can form a gentle slope around each diamond grit.Such a massive support can allow aggressive cutting of the diamond tool with a low power consumption.展开更多
就Bethuel,Brezis和Helein提出的问题讨论了Planar Ferromagnets and Antiferromagnets泛函在H={u(x)=(sinf(r)|xx|,cosf(r))∈H1(B1,S2);f(0)=0,f(1)=2π,r=|x|}中的径向极小元的一些性质,其中包括此泛函的径向极小元的零点的分布及若...就Bethuel,Brezis和Helein提出的问题讨论了Planar Ferromagnets and Antiferromagnets泛函在H={u(x)=(sinf(r)|xx|,cosf(r))∈H1(B1,S2);f(0)=0,f(1)=2π,r=|x|}中的径向极小元的一些性质,其中包括此泛函的径向极小元的零点的分布及若干个上界估计,并给出了这一问题的肯定回答.展开更多
The stabilization and trajectory tracking problems of autonomous airship's planar motion are studied. By defining novel configuration error and velocity error, the dynamics of error systems are derived. By applying L...The stabilization and trajectory tracking problems of autonomous airship's planar motion are studied. By defining novel configuration error and velocity error, the dynamics of error systems are derived. By applying Lyapunov stability method, the state feedback control laws are designed and the close-loop error systems are proved to be uniformly asymptotically stable by Matrosov theorem. In particular, the controller does not need knowledge on system parameters in the case of set-point stabilization, which makes the controller robust with respect to parameter uncertainty. Numerical simulations illustrate the effectiveness of the controller designed.展开更多
Lithography is one of the most important and complicated key equipment for the integr ated circuit man ufacture.The 2一D positioning device is the importan t subsystem of lithography.Compared with conventional 2一D po...Lithography is one of the most important and complicated key equipment for the integr ated circuit man ufacture.The 2一D positioning device is the importan t subsystem of lithography.Compared with conventional 2一D positioning systems with cumbersome stacked arrangement,the 2-D positioning systems with planar motors have received increasing attention recently.Currently,many types of planar motors have been proposed.展开更多
Perovskite solar cells(PSCs) have emerged as one of the most promising candidates for photovoltaic applications. Low-cost, low-temperature solution processes including coating and printing techniques makes PSCs promis...Perovskite solar cells(PSCs) have emerged as one of the most promising candidates for photovoltaic applications. Low-cost, low-temperature solution processes including coating and printing techniques makes PSCs promising for the greatly potential commercialization due to the scalability and compatibility with large-scale, roll-to-roll manufacturing processes. In this review, we focus on the solution deposition of charge transport layers and perovskite absorption layer in both mesoporous and planar structural PSC devices. Furthermore, the most recent design strategies via solution deposition are presented as well, which have been explored to enlarge the active area, enhance the crystallization and passivate the defects, leading to the performance improvement of PSC devices.展开更多
The seismic behavior of planar frames with concrete-filled T-section columns to steel beam was experimentally and numerically studied. A finite element analysis (FEA) model was developed to investigate the engineeri...The seismic behavior of planar frames with concrete-filled T-section columns to steel beam was experimentally and numerically studied. A finite element analysis (FEA) model was developed to investigate the engineering properties of the planar frames. Two 1:2.5 reduced-scale specimens of T-section concrete-filled steel tubular column and steel beam of single-story and single-bay plane frames were designed and fabricated based on the design principles of strong-column, weak-beam and stronger-joint. One three-dimensional entity model of the investigated frame structure was built using a large-scale nonlinear finite-element analysis software ABAQUS. Experimental results show that the axial compression ratio has no effect on the failure mode of the structure, while with the increase of axial compression ratio and the dissipated energy ability increasing, the structural ductility decreased. The results from both experiments and simulations agree with each other, which verifies the validity and accuracy of the developed finite element model. Furthermore, the developed finite element model helps to reflect the detailed stress status of the investigated frame at different time and different positions.展开更多
In rigid mechanism dynamic analysis, the equivalence theorem is often used due to its simplicity and perceivability. Based on conjugation and duality between inertia energy storing element and elastic energy storing...In rigid mechanism dynamic analysis, the equivalence theorem is often used due to its simplicity and perceivability. Based on conjugation and duality between inertia energy storing element and elastic energy storing element, the equivalence theorem is used in elastic error analysis of planar mechanism. A set of calculation formula of elastic error is introduced, and these equations are similar in expression form to the rigid dynamic equation. To demonstrate the method developed, a computation example is given.展开更多
Triggered spark-gap switch is a popular discharge switch for pulse power systems.Previous studies have focused on planarizing this switch using thin film techniques in order to meet the requirements of compact size in...Triggered spark-gap switch is a popular discharge switch for pulse power systems.Previous studies have focused on planarizing this switch using thin film techniques in order to meet the requirements of compact size in the systems.Such switches are one-shot due to electrodes being too thin to sufficiently resist spark-erosion.Additionally,these switches did not employ any structures in securing internal gas composition,resulting in inconsistent performance under harsh atmospheres.In this work,a novel planar triggered spark-gap switch(PTS)with a hermetically sealed cavity was batched-prepared with printed circuit board(PCB)technology,to achieve reusability with low cost.The proposed PTS was inspected by micro-computed tomography to ensure PCB techniques meet the requirements of machining precision.The results from electrical experiments demonstrated that PCB PTS were consistent and reusable with lifespan over 20 times.The calculated switch voltage and circuit current were consistent with those derived from real-world measurements.Finally,PCB PTS was used to introduce hexanitrostilbene(HNS)pellets in a pulse power system to verify its performance.展开更多
Elastic heat transfer tube bundles are widely used in the field of flow-induced vibration heat transfer enhancement. Two types of mainly used tube bundles, the planar elastic tube bundle and the conical spiral tube bu...Elastic heat transfer tube bundles are widely used in the field of flow-induced vibration heat transfer enhancement. Two types of mainly used tube bundles, the planar elastic tube bundle and the conical spiral tube bundle were comprehensively compared in the condition of the same shell side diameter. The natural mode characteristics, the effect of fluid-structure interaction, the stress distribution, the comprehensive heat transfer performance and the secondary fluid flow of the two elastic tube bundles were all concluded and compared. The results show that the natural frequency and the critical velocity of vibration buckling of the planar elastic tube bundle are larger than those of the conical spiral tube bundle, while the stress distribution and the comprehensive heat transfer performance of the conical spiral tube bundle are relatively better.展开更多
The alignment coupling between optical waveguide chips and optical fiber arrays is the basis of the alignment coupling of planar optical waveguide devices, and the precise position detection with angle and spacing adj...The alignment coupling between optical waveguide chips and optical fiber arrays is the basis of the alignment coupling of planar optical waveguide devices, and the precise position detection with angle and spacing adjustments is one of the key steps of alignment coupling. A methodology for position detection, and angle and spacing adjustment was proposed for optical waveguide chips and optical fiber arrays based on machine vision. The experimental results show angle detection precision levels higher than 0.05°, line detection precision levels higher than 0.1 μm, and detection time less than 2 s. Therefore, the system developed herein meets the precise requirements necessary for position detection, and angle and spacing adjustments for optical waveguide chips and optical fiber arrays.展开更多
The range and angle information of the frequency diverse array(FDA) cannot be exclusively determined at the output of the array because of the range-angle coupled transmit beampattern. The best decoupling approach is ...The range and angle information of the frequency diverse array(FDA) cannot be exclusively determined at the output of the array because of the range-angle coupled transmit beampattern. The best decoupling approach is to form a dot-shaped beampattern rather than the S-shaped beampattern of the basic FDA.Considering the degradation of the output signal-to-interferenceplus-noise ratio(SINR) caused by the coupled beampattern, we propose a dot-shaped beamforming method based on the analyzed overlapping subarray-based using a logarithmic offset and a subarray-based planar FDA using a logarithmically increasing frequency offset, with elements transmitting at multiple frequencies. Several simulation results demonstrate the effectiveness of the proposed method in transmit energy focusing, sidelobe suppression and array resolution.展开更多
A simple one-dimensional planar model for ejection was set up based on experiments.And numerical simulation was performed on this model with particle trajectory model method.An Eulerian finite volume method was conduc...A simple one-dimensional planar model for ejection was set up based on experiments.And numerical simulation was performed on this model with particle trajectory model method.An Eulerian finite volume method was conducted to resolve gas field.And Lagrangian method was imposed to track each particle.The interaction between gas and particles was responded as source terms in governing equations which were induced by forces.The effects of total spraying mass,particle size and other factors on the mixture of particles and gas were investigated.The spatial distributions of particle mass and velocity at different time were presented.The result shows that the numerical results are qualitatively consistent to those of experiments.展开更多
基金Supported by the Fundamental Research Funds for the Central Universities(ZYGX2021J008)。
文摘A novel substrate integrated microstrip to ultra-thin cavity filter transition operating in the W-band is proposed in this letter.The structure is a new method of connecting microstrip circuits and waveguide filters,and this new structure enables a planar integrated transition from microstrip lines to ultra-thin cavity filters,thereby reducing the size of the transition structure and achieving miniaturization.The structure includes a conventional tapered microstrip transition structure,which guides the electromagnetic field from the microstrip line to the reduced-height dielectric-filled waveguide,and an air-filled matching cavity which is placed between the dielectric-filled waveguide and the ultra-thin cavity filter.The heights of the microstrip line,the dielectric-filled waveguide and the ultra-thin cavity filter are the same,enabling seamless integration within a planar radio-frequency(RF)circuit.To facilitate testing,mature finline transition structures are integrated at both ends of the microstrip line during fabrications.The simulation results of the fabricated microstrip to ultra-thin cavity filter transition with the finline transition structure,with a passband of 91.5-96.5 GHz,has an insertion loss of less than 1.9 dB and a return loss lower than-20 dB.And the whole structure has also been measured which achieves an insertion loss less than 2.6 dB and a return loss lower than-15 dB within the filter's passband,including the additional insertion loss introduced by the finline transitions.Finally,a W-band compact up-conversion module is designed,and the test results show that after using the proposed structure,the module achieves 95 dBc suppression of the 84 GHz local oscillator.It is also demonstrated that the structure proposed in this letter achieves miniaturization of the system integration without compromising the filter performance.
文摘In this paper,by using the method of Lyapunov-Schmidt reduction,we obtain the existence of multi-bump solutions for planar Schrödinger-Poisson system.
基金supported by the Shanxi Province Central Guidance Fund for Local Science and Technology Development Project(YDZJSX2024D030)the National Natural Science Foundation of China(22075197,22278290)+2 种基金the Shanxi Province Key Research and Development Program Project(2021020660301013)the Shanxi Provincial Natural Science Foundation of China(202103021224079)the Research and Development Project of Key Core and Common Technology of Shanxi Province(20201102018).
文摘The advancement of planar micro-supercapacitors(PMSCs)for micro-electromechanical systems(MEMS)has been significantly hindered by the challenge of achieving high energy and power densities.This study addresses this issue by leveraging screen-printing technology to fabricate high-performance PMSCs using innovative composite ink.The ink,a synergistic blend of few-layer graphene(Gt),carbon black(CB),and NiCo_(2)O_(4),was meticulously mixed to form a conductive and robust coating that enhanced the capacitive performance of the PMSCs.The optimized ink formulation and printing process result in a micro-supercapacitor with an exceptional areal capacitance of 18.95 mF/cm^(2)and an areal energy density of 2.63μW·h/cm^(2)at a current density of 0.05 mA/cm^(2),along with an areal power density of 0.025 mW/cm^(2).The devices demonstrated impressive durability with a capacitance retention rate of 94.7%after a stringent 20000-cycle test,demonstrating their potential for long-term applications.Moreover,the PMSCs displayed excellent mechanical flexibility,with a capacitance decrease of only 3.43%after 5000 bending cycles,highlighting their suitability for flexible electronic devices.The ease of integrating these PMSCs into series and parallel configurations for customized power further underscores their practicality for integrated power supply solutions in various technologies.
基金Supported by the Beijing Municipal Science&Technology Commission(Z211100004421012),the Key Reaserch and Development Pro⁃gram of China(2022YFF0605902)。
文摘In this paper,a linear optimization method(LOM)for the design of terahertz circuits is presented,aimed at enhancing the simulation efficacy and reducing the time of the circuit design workflow.This method enables the rapid determination of optimal embedding impedance for diodes across a specific bandwidth to achieve maximum efficiency through harmonic balance simulations.By optimizing the linear matching circuit with the optimal embedding impedance,the method effectively segregates the simulation of the linear segments from the nonlinear segments in the frequency multiplier circuit,substantially improving the speed of simulations.The design of on-chip linear matching circuits adopts a modular circuit design strategy,incorporating fixed load resistors to simplify the matching challenge.Utilizing this approach,a 340 GHz frequency doubler was developed and measured.The results demonstrate that,across a bandwidth of 330 GHz to 342 GHz,the efficiency of the doubler remains above 10%,with an input power ranging from 98 mW to 141mW and an output power exceeding 13 mW.Notably,at an input power of 141 mW,a peak output power of 21.8 mW was achieved at 334 GHz,corresponding to an efficiency of 15.8%.
基金Supported by the National Key Research and Development Program of China(2021YFB2800201)the Strategic Priority Research Program of Chinese Academy of Sciences(XDB43000000)。
文摘A 16-channel arrayed waveguide grating(AWG)with an 800 GHz channel spacing in the O-band has been developed and fabricated based on silica planar lightwave circuit(PLC)technology.By extending the wave⁃length allocation from 8 channels to 16 channels as specified in IEEE 802.3bs,we increased the number of chan⁃nels and boosted transmission capacity to meet the 1.6 Tbps and higher-speed signal transmission requirements for future data centers.Through optimizing the AWG structure,it has achieved insertion loss(IL)better than-1.61 dB,loss uniformity below 0.35 dB,polarization-dependent loss(PDL)below 0.35 dB,adjacent channel cross⁃talk under-20.05 dB,ripple less than 0.75 dB,center wavelength offset under 0.22 nm and 1 dB bandwidth ex⁃ceeding 2.88 nm.The AWG has been successfully measured to transmit 53 Gbaud 4-level pulse amplitude modu⁃lation(PAM4)signal per channel and the total transmission speed can reach over 1.6 Tbps.
基金support from National Natural Science Foundation of China(Grant Nos.22275145,22305189and 21875184)Natural Science Foundation of Shaanxi Province(Grant Nos.2022JC-10 and 2024JC-YBQN-0112).
文摘Two-dimensional energetic materials(2DEMs),characterized by their exceptional interlayer sliding properties,are recognized as exemplar of low-sensitivity energetic materials.However,the diversity of available 2DEMs is severely constrained by the absence of efficient methods for rapidly predicting crystal packing modes from molecular structures,impeding the high-throughput rational design of such materials.In this study,we employed quantified indicators,such as hydrogen bond dimension and maximum planar separation,to quickly screen 172DEM and 16 non-2DEM crystal structures from a crystal database.They were subsequently compared and analyzed,focusing on hydrogen bond donor-acceptor combinations,skeleton features,and intermolecular interactions.Our findings suggest that theπ-πpacking interaction energy is a key determinant in the formation of layered packing modes by planar energetic molecules,with its magnitude primarily influenced by the strongest dimericπ-πinteraction(π-π2max).Consequently,we have delineated a critical threshold forπ-π2max to discern layered packing modes and formulated a theoretical model for predictingπ-π2max,grounded in molecular electrostatic potential and dipole moment analysis.The predictive efficacy of this model was substantiated through external validation on a test set comprising 31 planar energetic molecular crystals,achieving an accuracy of 84%and a recall of 75%.Furthermore,the proposed model shows superior classification predictive performance compared to typical machine learning methods,such as random forest,on the external validation samples.This contribution introduces a novel methodology for the identification of crystal packing modes in 2DEMs,potentially accelerating the design and synthesis of high-energy,low-sensitivity 2DEMs.
基金National Natural Science Foundation of China (Grant No.11872013) to provide fund for conducting experiments。
文摘The integration method of exploding foil initiator system(EFIs) used to be researched to broaden its application range in military and aerospace in the last few decades.In order to lower the firing voltage below 1 kV,an integrated EFIs with enhanced energy efficiency was designed.Corresponding exploding foil initiator chips were fabricated in batch via micro electromechanical systems technology by integrating a unified foil,a flyer layer and a barrel on a glass substrate successively,meanwhile its package of the whole system was proposed at a volume of 2.194 cm^(3).The structural parameters were determined by predicted performance including flyer velocity,impact behavior and conduction property via the proposed theoretical models and the static electric field simulation.As expect,this integrated EFIs exhibited excellent functions,which could accelerate the flyer to a terminal velocity over 4 km/s and preeminently initiate HNS-IV pellet at a circuit of 0.24 μF/0.9 kV.Furthermore,the theoretical design,fabrication and performance test have been all included to validate the feasibility of this integrated EFIs that was beneficial for its commercial development in the future.
文摘Diamond grits held in metal matrix(sintered or electroplated) are retained primary by mechanical locking.Because of this weak attachment,the pullouts of diamond from matrix are inevitable during the cutting process.Moreover,the working grits have low protrusion heights,so the cutting speed of the tool is limited. Furthermore,the rubbing of metal matrix and the work object can cause thermal damages of diamond and other materials,and power increase for the operation. Diamond can be firmly held in a metal matrix by brazing.Because of the presence of strong chemical bonding,diamond grits can protrude twice as high without being knocked off from the matrix.As a result,the cutting speed of the tool may be doubled. When the braze melts,the carbide formers will migrate toward diamond to form carbide at the interface. This reaction may be excessive as to degrade diamond significantly.In this case,a coating on diamond may be needed to moderate the reaction. When diamond is brazed on the surface of a substrate,the melt tends to pull the grits closer together that may thicken the braze layer locally.The clustering of grits can reduce the cutting effectiveness of the diamond tool.A diamond grid design is necessary to maintain the uniform thickness of the braze layer.Moreover,the controlled melting of braze alloy can form a gentle slope around each diamond grit.Such a massive support can allow aggressive cutting of the diamond tool with a low power consumption.
文摘就Bethuel,Brezis和Helein提出的问题讨论了Planar Ferromagnets and Antiferromagnets泛函在H={u(x)=(sinf(r)|xx|,cosf(r))∈H1(B1,S2);f(0)=0,f(1)=2π,r=|x|}中的径向极小元的一些性质,其中包括此泛函的径向极小元的零点的分布及若干个上界估计,并给出了这一问题的肯定回答.
文摘The stabilization and trajectory tracking problems of autonomous airship's planar motion are studied. By defining novel configuration error and velocity error, the dynamics of error systems are derived. By applying Lyapunov stability method, the state feedback control laws are designed and the close-loop error systems are proved to be uniformly asymptotically stable by Matrosov theorem. In particular, the controller does not need knowledge on system parameters in the case of set-point stabilization, which makes the controller robust with respect to parameter uncertainty. Numerical simulations illustrate the effectiveness of the controller designed.
文摘Lithography is one of the most important and complicated key equipment for the integr ated circuit man ufacture.The 2一D positioning device is the importan t subsystem of lithography.Compared with conventional 2一D positioning systems with cumbersome stacked arrangement,the 2-D positioning systems with planar motors have received increasing attention recently.Currently,many types of planar motors have been proposed.
基金Projects(51673214,51673218,61774170)supported by the National Natural Science Foundation of ChinaProject(2017YFA0206600)supported by the National Key Research and Development Program of China。
文摘Perovskite solar cells(PSCs) have emerged as one of the most promising candidates for photovoltaic applications. Low-cost, low-temperature solution processes including coating and printing techniques makes PSCs promising for the greatly potential commercialization due to the scalability and compatibility with large-scale, roll-to-roll manufacturing processes. In this review, we focus on the solution deposition of charge transport layers and perovskite absorption layer in both mesoporous and planar structural PSC devices. Furthermore, the most recent design strategies via solution deposition are presented as well, which have been explored to enlarge the active area, enhance the crystallization and passivate the defects, leading to the performance improvement of PSC devices.
基金Projects(51378077,51478047,51778066)supported by the National Natural Science Foundation of ChinaProject(D20151304)supported by Science and Technology Research Project of Education Department of Hubei Province,ChinaProject(2017CFA070)supported by Hubei Provincial Natural Science Foundation,China
文摘The seismic behavior of planar frames with concrete-filled T-section columns to steel beam was experimentally and numerically studied. A finite element analysis (FEA) model was developed to investigate the engineering properties of the planar frames. Two 1:2.5 reduced-scale specimens of T-section concrete-filled steel tubular column and steel beam of single-story and single-bay plane frames were designed and fabricated based on the design principles of strong-column, weak-beam and stronger-joint. One three-dimensional entity model of the investigated frame structure was built using a large-scale nonlinear finite-element analysis software ABAQUS. Experimental results show that the axial compression ratio has no effect on the failure mode of the structure, while with the increase of axial compression ratio and the dissipated energy ability increasing, the structural ductility decreased. The results from both experiments and simulations agree with each other, which verifies the validity and accuracy of the developed finite element model. Furthermore, the developed finite element model helps to reflect the detailed stress status of the investigated frame at different time and different positions.
文摘In rigid mechanism dynamic analysis, the equivalence theorem is often used due to its simplicity and perceivability. Based on conjugation and duality between inertia energy storing element and elastic energy storing element, the equivalence theorem is used in elastic error analysis of planar mechanism. A set of calculation formula of elastic error is introduced, and these equations are similar in expression form to the rigid dynamic equation. To demonstrate the method developed, a computation example is given.
基金We gratefully acknowledge support from the Natural Science Foundation of Jiangsu Province of China(Grant No.BK20151486).
文摘Triggered spark-gap switch is a popular discharge switch for pulse power systems.Previous studies have focused on planarizing this switch using thin film techniques in order to meet the requirements of compact size in the systems.Such switches are one-shot due to electrodes being too thin to sufficiently resist spark-erosion.Additionally,these switches did not employ any structures in securing internal gas composition,resulting in inconsistent performance under harsh atmospheres.In this work,a novel planar triggered spark-gap switch(PTS)with a hermetically sealed cavity was batched-prepared with printed circuit board(PCB)technology,to achieve reusability with low cost.The proposed PTS was inspected by micro-computed tomography to ensure PCB techniques meet the requirements of machining precision.The results from electrical experiments demonstrated that PCB PTS were consistent and reusable with lifespan over 20 times.The calculated switch voltage and circuit current were consistent with those derived from real-world measurements.Finally,PCB PTS was used to introduce hexanitrostilbene(HNS)pellets in a pulse power system to verify its performance.
基金Projects(xjj2013104,08143063)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(2011CB706606)supported by the National Basic Research Program of China
文摘Elastic heat transfer tube bundles are widely used in the field of flow-induced vibration heat transfer enhancement. Two types of mainly used tube bundles, the planar elastic tube bundle and the conical spiral tube bundle were comprehensively compared in the condition of the same shell side diameter. The natural mode characteristics, the effect of fluid-structure interaction, the stress distribution, the comprehensive heat transfer performance and the secondary fluid flow of the two elastic tube bundles were all concluded and compared. The results show that the natural frequency and the critical velocity of vibration buckling of the planar elastic tube bundle are larger than those of the conical spiral tube bundle, while the stress distribution and the comprehensive heat transfer performance of the conical spiral tube bundle are relatively better.
基金Projects(51475479,51075402)supported by the National Natural Science Foundation of ChinaProject(2012AA040406)supported by the National High Technology Research and Development Program of China+2 种基金Project(20110162130004)supported by the Research Fund for the Doctoral Program of Higher Education of ChinaProject(14JJ2010)supported by the Natural Science Foundation of Hunan Province,ChinaProject(GZKF-201401)supported by the Open Project of Stage Key Laboratory of Fluid Power Transmission and Control(Zhejiang University),China
文摘The alignment coupling between optical waveguide chips and optical fiber arrays is the basis of the alignment coupling of planar optical waveguide devices, and the precise position detection with angle and spacing adjustments is one of the key steps of alignment coupling. A methodology for position detection, and angle and spacing adjustment was proposed for optical waveguide chips and optical fiber arrays based on machine vision. The experimental results show angle detection precision levels higher than 0.05°, line detection precision levels higher than 0.1 μm, and detection time less than 2 s. Therefore, the system developed herein meets the precise requirements necessary for position detection, and angle and spacing adjustments for optical waveguide chips and optical fiber arrays.
基金supported by the National Natural Science Foundation of China(61503408)。
文摘The range and angle information of the frequency diverse array(FDA) cannot be exclusively determined at the output of the array because of the range-angle coupled transmit beampattern. The best decoupling approach is to form a dot-shaped beampattern rather than the S-shaped beampattern of the basic FDA.Considering the degradation of the output signal-to-interferenceplus-noise ratio(SINR) caused by the coupled beampattern, we propose a dot-shaped beamforming method based on the analyzed overlapping subarray-based using a logarithmic offset and a subarray-based planar FDA using a logarithmically increasing frequency offset, with elements transmitting at multiple frequencies. Several simulation results demonstrate the effectiveness of the proposed method in transmit energy focusing, sidelobe suppression and array resolution.
基金Project(10672151) supported by the National Natural Science Foundation of China
文摘A simple one-dimensional planar model for ejection was set up based on experiments.And numerical simulation was performed on this model with particle trajectory model method.An Eulerian finite volume method was conducted to resolve gas field.And Lagrangian method was imposed to track each particle.The interaction between gas and particles was responded as source terms in governing equations which were induced by forces.The effects of total spraying mass,particle size and other factors on the mixture of particles and gas were investigated.The spatial distributions of particle mass and velocity at different time were presented.The result shows that the numerical results are qualitatively consistent to those of experiments.