A high precision, high antijamming multipoint infrared telemetry system was developed to measure the piston temperature in internal combustion engine. The temperature at the measuring point is converted into correspon...A high precision, high antijamming multipoint infrared telemetry system was developed to measure the piston temperature in internal combustion engine. The temperature at the measuring point is converted into corresponding voltage signal by the thermo-couple first. Then after the V/F stage, the voltage signal is converted into the frequency signal to drive the infrared light-emitting diode to transmit infrared pulses. At the receiver end, a photosensitive audion receives the infrared pulses. After conversion, the voltage recorded by the receiver stands for the magnitude of temperature at the measuring point. Test results of the system indicate that the system is practical and the system can perform multipoint looping temperature measurements for the piston.展开更多
In order to clarify the mechanism and main influencing factors of the vibration energy coupling transmission with a dual-piston structure,a thermodynamic and dynamic coupling model of the free piston linear generator(...In order to clarify the mechanism and main influencing factors of the vibration energy coupling transmission with a dual-piston structure,a thermodynamic and dynamic coupling model of the free piston linear generator(FPLG)was established.The system energy conversion,vibration energy coupling transmission,and influencing factors were studied in detail.The coupling transmission paths and the secondary influence mechanism from in-cylinder combustion on vibration energy transmission were obtained.In addition,the influence of the movement characteristics of the dual-piston on the vibration energy transmission was studied,and the typical parameter variation law was obtained,which provides theoretical guidance for the subsequent vibration reduction design of the FPLG.展开更多
For the aerial dispersing interior ballistic process and submunition exterior ballistic initial conditions of cluster munition with piston maximum travel limit, a novel model is established, and the numerical simulati...For the aerial dispersing interior ballistic process and submunition exterior ballistic initial conditions of cluster munition with piston maximum travel limit, a novel model is established, and the numerical simulation is performed. The piston maximum travel limit and the effect of reaction force on carrier body are researched using the internal ballistic model. Guide tube, cluster munition rotating and submunition assembly are analyzed using the submunition initial external ballistic model. The computational results are consistent with the practical process and the experimental data, and prove the rationality of this model. The theoretical methods are presented for the construction design and dispersion analysis of piston dispersal mechanism.展开更多
The problem of the churning loss in swash plate axial piston machines is investigated through experimental measurement and theoretical analysis. Several works surrounding churning loss in hydraulic components have bee...The problem of the churning loss in swash plate axial piston machines is investigated through experimental measurement and theoretical analysis. Several works surrounding churning loss in hydraulic components have been proposed in the past, but few have conducted experimental studies and accounted for both dry and wet housing conditions. In this study,a specialized experimental setup is established, which includes a transparent test pump diligently designed for performing various functions of tests. The test pump can work as a real pump without losing any actual features of pump operation. The torque loss in both the dry housing pump and wet housing pump is measured in terms of the shaft speed and its predictive model is also developed analytically. The comparisons between measured and calculated torque loss are presented, showing how speed influences torque loss in both conditions. The advantage/disadvantages of the two cases are summarized. The significance of the test setup is highlighted by verifying the proposed model, which can advance the understanding of energy losses of high speed pumps in future.展开更多
Water hydraulic systems have provoked major interest because of the human friendly and environmental safety aspects. Piston pump is one of the most frequently used hydraulic units in recent engineering technique. In w...Water hydraulic systems have provoked major interest because of the human friendly and environmental safety aspects. Piston pump is one of the most frequently used hydraulic units in recent engineering technique. In water hydraulic piston pump, poor lubrication is more likely to happen than in oil hydraulic one because of difference in properties between water and oil. So there are some key problems such as corrosive wear and erosion, which are investigated briefly. Many new materials have been developed, which give longer life expectancies with water without corrosion and erosion. A new type of seawater hydraulic piston pumps with better suction characteristics had been developed at HUST. Much of this research has concentrated on new materials, structure and experiments, which are also specially introduced.展开更多
A numerical program is built to simulate the performance of a spark ignited two-stroke free-piston engine coupled with a linear generator. The computational model combines a series of dynamic and thermodynamic equatio...A numerical program is built to simulate the performance of a spark ignited two-stroke free-piston engine coupled with a linear generator. The computational model combines a series of dynamic and thermodynamic equations that are solved simultaneously to predict the performances of the engines. The dynamic analysis performed consists of an evaluation of the frictional force and load force introduced by the generator. The thermodynamic analysis used a single zone model to describe the engine' s working cycle which includes intake, scavenging, compression, combustion and expansion, and to evaluate the effect of heat transfer based on the first law of thermodynamics and the ideal gas state equation. Because there is no crankshaft, a time based Wiebe equation was used to express the fraction of fuel burned in the combustion. The calculated results were validated by using the experimental data from another research group. The results indicate that the free-piston generator has some advantages over conventional engines.展开更多
The adaptive FEM analysis of the temperature field of the piston in one diesel engine is given by using the ANSYS software. By making full use of the post results provided by the software, the posteriori error estimat...The adaptive FEM analysis of the temperature field of the piston in one diesel engine is given by using the ANSYS software. By making full use of the post results provided by the software, the posteriori error estimation and adaptive accuracy meshing algorithm is developed. So the blindness of the mesh design through experiences can be avoided, and the accuracy requirement is adapted to the relative temperature gradient distribution across the entire domain. Therefore the meshes and solutions can be obtained at the same time. Based on the temperature field analysis, the thermal stress and deformation fields are calculated as well. The results show that the stress concentrates on the edge of the piston pin boss and the inside surface of the first ring groove, and the deformation of the head of the piston is greatest. But the difference between the long and short axes of the bottom cross section is greatest.展开更多
Based on the loading conditions of engine, applying difference method to solve the hydrodynamic lubrication equation of piston skirt movement, the force acting on piston skirt and the moment on wrist pin were obtained...Based on the loading conditions of engine, applying difference method to solve the hydrodynamic lubrication equation of piston skirt movement, the force acting on piston skirt and the moment on wrist pin were obtained. A computer program for simulating the piston second order motion was conducted to calculate the lateral motion of the upper part and the bottom part of piston skirts of the engine of automotive model CA1091. From the simulated result, the maximal impacting phase and the maximal impacting region of the piston were obtained. The result can be used for designing engine, diagnosing the noise of piston knocking cylinder wall and explaining many practical fault phenomena in theory.展开更多
The micro free-piston swing engine (MFPSE) is a new structure, free-piston internal combustion engine. The dynamic model integrated MFPSE with a power generator and thermodynamic models in compression, power and sca...The micro free-piston swing engine (MFPSE) is a new structure, free-piston internal combustion engine. The dynamic model integrated MFPSE with a power generator and thermodynamic models in compression, power and scavenge processes based on the open thermodynamic systems were presented. A simulation was executed at given geometric parameters and initial conditions. The results manifest that the working principle of MFPSE is feasible.展开更多
The compression stroke characteristics of free-piston engine generator were studied. The numerical model of the compression stroke was established based on thermodynamics and dynamics equation,and the leak loss,heat l...The compression stroke characteristics of free-piston engine generator were studied. The numerical model of the compression stroke was established based on thermodynamics and dynamics equation,and the leak loss,heat loss and friction loss were considered. Through solving numerical equations,the in-cylinder pressure of compression stroke under different compression ratios was calculated,energy transfer and conversion process was analyzed,and the calculated results were experimentally verified. The results showed that the actual effective output of electronic energy and the compression energy stored in the com-pressed gas accounted for about 70%. The compression energy gradually increased with the increasing com-pression ratio. When the compression ratio was more than 7. 5,the actual compression energy increased slowly and the energy error between simulation and test decreased.展开更多
On the basis of theoretical analysis and experimental rerearck, the vibration characteristics of the ZB1-107 bend axis piston pump that is wldely ed in mining machinery is studied in the paper, and the study provides ...On the basis of theoretical analysis and experimental rerearck, the vibration characteristics of the ZB1-107 bend axis piston pump that is wldely ed in mining machinery is studied in the paper, and the study provides the basis for pump fault diagnesis. The vibration signals of the rault-rree pump and tbe faulty pump have been compared in frequency domaln and it is round that tbere is obvious differeuce in their vibration frequency spectra. The experimentol results demonstrate that the raults, such as port plate wear and tear and the looseness or ball joint or the conuecting rod, can be effectively detected through vibration analysis.展开更多
Heavy fuel aviation piston engines(HF-APEs)refer to the engine using fuels with high flash point,such as kerosene or light diesel.Here technique specifications of some classical foreign HF-APEs(Hirth3503,Zanzottera 49...Heavy fuel aviation piston engines(HF-APEs)refer to the engine using fuels with high flash point,such as kerosene or light diesel.Here technique specifications of some classical foreign HF-APEs(Hirth3503,Zanzottera 498)are introduced.Recent progress and trend of fuel injection,fuel ignition,working cycle,intake charging,thermal management and electronic control of HF-APE are compared and summarized.Emphases are put on the technological difficulties,solutions and development tendency in the design,retrofitting and manufacturing of HF-APE aiming to provide references for the research of related area and the development of prototype HF-APE in China.展开更多
In order to improve lubricating characteristics of slippers in an axial piston pump, the combining center cavity slipper approach was proposed based on slipper shape and moving characteristic. The cylindrical coordina...In order to improve lubricating characteristics of slippers in an axial piston pump, the combining center cavity slipper approach was proposed based on slipper shape and moving characteristic. The cylindrical coordinate was used in the lubricant area and mesh was made. The blockweight approach was implemented to deal with non-coincidence of mesh and shallow recess border in numerical method. The finite control volume method was applied in calculating pressure distribution. The flow conservation equation and film thickness model were resolved through Gauss-Siedel relaxation iteration. The calculation and analysis results indicate that compared to the slipper (1) slip- per pressure distribution is improved; (2) hydrodynamic pressure of the combining slipper is greatly increased; (3) inclining degree is greatly reduced; (4) negative pressure in lubricant film disappear. So the combining center cavity slipper is lubricated better.展开更多
The three dimensional temperature field of the gap between piston and cylinder was ob- tained by numerically solving energy equation. The boundary condition of the equation was given in the form of heat transfer coeff...The three dimensional temperature field of the gap between piston and cylinder was ob- tained by numerically solving energy equation. The boundary condition of the equation was given in the form of heat transfer coefficient, instead of solving the temperature field of solid parts. The tem- perature field was calculated both under high speed high pressure condition and low speed low pres- sure condition. The numerical result was compared to experimental result under low speed low pres- sure condition and showed good agreement. It was shown that the influence of heat transfer coeffi- cient on t'tim temperature was significant. The adiabatic condition was reasonable under low speed low pressure condition, but invalid under high speed high pressure condition. It was a good way to describe the influence of solid parts on temperature using heat transfer coefficient but avoiding sol- ving the temperature field of solids parts.展开更多
To experimentally match performance and structural features of an opposed-piston two- stroke engine ( OPTSE ), two calculation models, a one-dimensional ( 1-D ) model and a three-di- mensional (3-D) model, of th...To experimentally match performance and structural features of an opposed-piston two- stroke engine ( OPTSE ), two calculation models, a one-dimensional ( 1-D ) model and a three-di- mensional (3-D) model, of the combined charging matching simulation of an OPTSE was established by using the GT-Power software. To test and verify the one dimensional model, the three-dimension- al computational fluid dynamics simulation model was established using AVL FIRE software. Cylinder pressure curves in these two models match perfectly, showing that it is reasonable to use the one-di- mensional model to simulate the work process of an OPTSE. Moreover, the effects of delivery ratio, nozzle ring diameter and exhaust back pressure on brake specific fuel consumption ( BSFC ) were studied.展开更多
A frequency compensation control method for the opposed-piston two-stroke folded-cranktrain( OPFC) diesel engine's common rail system is presented as a result of the study of the loop-shaping theory. A common rail ...A frequency compensation control method for the opposed-piston two-stroke folded-cranktrain( OPFC) diesel engine's common rail system is presented as a result of the study of the loop-shaping theory. A common rail working process and the classical frequency control theory are combined to construct a frequency restriction of common rail pressure. A frequency compensator is utilized to improve the robustness of multiplicative perturbations and disturbance. The loop-shaping method has been applied to design the common rail pressure controller of the OPFC diesel engine. Simulation and bench test results show that in the condition of perturbation that comes from the effect of injection,multi-injection,fuel pumping of a pre-cylinder,and instantaneous pressure fluctuation,the controller indicates high precision. Compared with the original controller,this method improves the control precision by 67. 3%.展开更多
In order to improve the thermal power conversion capacity of the internal combustion engine,combined with existing opposed-piston two-stroke engine( OP2S) and hydraulic free piston engine(HFPE),the integral struct...In order to improve the thermal power conversion capacity of the internal combustion engine,combined with existing opposed-piston two-stroke engine( OP2S) and hydraulic free piston engine(HFPE),the integral structure for a newtype of opposed-piston hydraulic-output( OPHO) engine has been designed,an operating principle has been introduced,the composition of its synchronous drive mechanism has been carefully analyzed,and a mathematical model has been built. In addition,the kinematics models of both the mechanism and the conventional crank-link mechanism have been established by utilizing MATLAB,and the movement rules of the pivotal moving components have been obtained. According to the simulation results,the piston movement of this newtype of opposed-piston hydraulic-output engine reveals a prominent asymmetry compared to the conventional crank-link engine. Under a fixed engine revolving speed,the compression time of the opposedpiston hydraulic-output engine is shortened while the expanding time is lengthened,thus the gas turbulence intensity is strengthened around the top dead center( TDC) position. Meanwhile,the piston obtains a longer isometric process compared to conventional engines,which could be benefitial to enhance the combustion efficiency.展开更多
The effects of different flow forms on an opposed-piston two-stroke(OPTS)gasoline-directinjection(GDI)engine was studied by analyzing the mixture formation and combustion.Swirl was broken and dissipated gradually ...The effects of different flow forms on an opposed-piston two-stroke(OPTS)gasoline-directinjection(GDI)engine was studied by analyzing the mixture formation and combustion.Swirl was broken and dissipated gradually and the turbulence kinetic energy(TKE)was small in the compression process;however,tumble was strengthened and the TKE was strong in the compression process.For swirl around X axis(the axis of cylinder)and tumble around Y axis(the vertical direction of injector),droplets were attached to the cylinder liner by the centrifugal force and the mixture distribution was poor.For tumble around Zaxis(the direction of injector),the wall film in cylinder liner was thin and mixture distribution was homogeneous.Results showed that since the injector were installed on the wall of the cylinder liner in the OPTS-GDI engine,the spray angle was small and the mixture formation time was short.The 45° oblique axis tumble ratio of 1 was reasonable for the mixture formation and combustion for an OPTS-GDI engine.展开更多
In both numerical simulation and experimental research for the piston of internal combustion engine, the verification foundations are always insufficient. The reason is the measurements for its transient temperature a...In both numerical simulation and experimental research for the piston of internal combustion engine, the verification foundations are always insufficient. The reason is the measurements for its transient temperature and stress under actual operation conditions are very difficult. A multi-channel measurement-storage technology is used in the engine bench experiment to measure the piston temperature and stress in real time. The temperature and stress changes in the engine operation process are obtained. They provide reliable instructive criteria for numerical analysis and experiment of the piston working state.展开更多
文摘A high precision, high antijamming multipoint infrared telemetry system was developed to measure the piston temperature in internal combustion engine. The temperature at the measuring point is converted into corresponding voltage signal by the thermo-couple first. Then after the V/F stage, the voltage signal is converted into the frequency signal to drive the infrared light-emitting diode to transmit infrared pulses. At the receiver end, a photosensitive audion receives the infrared pulses. After conversion, the voltage recorded by the receiver stands for the magnitude of temperature at the measuring point. Test results of the system indicate that the system is practical and the system can perform multipoint looping temperature measurements for the piston.
文摘In order to clarify the mechanism and main influencing factors of the vibration energy coupling transmission with a dual-piston structure,a thermodynamic and dynamic coupling model of the free piston linear generator(FPLG)was established.The system energy conversion,vibration energy coupling transmission,and influencing factors were studied in detail.The coupling transmission paths and the secondary influence mechanism from in-cylinder combustion on vibration energy transmission were obtained.In addition,the influence of the movement characteristics of the dual-piston on the vibration energy transmission was studied,and the typical parameter variation law was obtained,which provides theoretical guidance for the subsequent vibration reduction design of the FPLG.
文摘For the aerial dispersing interior ballistic process and submunition exterior ballistic initial conditions of cluster munition with piston maximum travel limit, a novel model is established, and the numerical simulation is performed. The piston maximum travel limit and the effect of reaction force on carrier body are researched using the internal ballistic model. Guide tube, cluster munition rotating and submunition assembly are analyzed using the submunition initial external ballistic model. The computational results are consistent with the practical process and the experimental data, and prove the rationality of this model. The theoretical methods are presented for the construction design and dispersion analysis of piston dispersal mechanism.
基金Supported by the National Natural Science Foundation of China(51005030)The Open Foundation of the State Key Laboratory of Fluid Power and Mechatronic Systems(201718)
文摘The problem of the churning loss in swash plate axial piston machines is investigated through experimental measurement and theoretical analysis. Several works surrounding churning loss in hydraulic components have been proposed in the past, but few have conducted experimental studies and accounted for both dry and wet housing conditions. In this study,a specialized experimental setup is established, which includes a transparent test pump diligently designed for performing various functions of tests. The test pump can work as a real pump without losing any actual features of pump operation. The torque loss in both the dry housing pump and wet housing pump is measured in terms of the shaft speed and its predictive model is also developed analytically. The comparisons between measured and calculated torque loss are presented, showing how speed influences torque loss in both conditions. The advantage/disadvantages of the two cases are summarized. The significance of the test setup is highlighted by verifying the proposed model, which can advance the understanding of energy losses of high speed pumps in future.
文摘Water hydraulic systems have provoked major interest because of the human friendly and environmental safety aspects. Piston pump is one of the most frequently used hydraulic units in recent engineering technique. In water hydraulic piston pump, poor lubrication is more likely to happen than in oil hydraulic one because of difference in properties between water and oil. So there are some key problems such as corrosive wear and erosion, which are investigated briefly. Many new materials have been developed, which give longer life expectancies with water without corrosion and erosion. A new type of seawater hydraulic piston pumps with better suction characteristics had been developed at HUST. Much of this research has concentrated on new materials, structure and experiments, which are also specially introduced.
文摘A numerical program is built to simulate the performance of a spark ignited two-stroke free-piston engine coupled with a linear generator. The computational model combines a series of dynamic and thermodynamic equations that are solved simultaneously to predict the performances of the engines. The dynamic analysis performed consists of an evaluation of the frictional force and load force introduced by the generator. The thermodynamic analysis used a single zone model to describe the engine' s working cycle which includes intake, scavenging, compression, combustion and expansion, and to evaluate the effect of heat transfer based on the first law of thermodynamics and the ideal gas state equation. Because there is no crankshaft, a time based Wiebe equation was used to express the fraction of fuel burned in the combustion. The calculated results were validated by using the experimental data from another research group. The results indicate that the free-piston generator has some advantages over conventional engines.
文摘The adaptive FEM analysis of the temperature field of the piston in one diesel engine is given by using the ANSYS software. By making full use of the post results provided by the software, the posteriori error estimation and adaptive accuracy meshing algorithm is developed. So the blindness of the mesh design through experiences can be avoided, and the accuracy requirement is adapted to the relative temperature gradient distribution across the entire domain. Therefore the meshes and solutions can be obtained at the same time. Based on the temperature field analysis, the thermal stress and deformation fields are calculated as well. The results show that the stress concentrates on the edge of the piston pin boss and the inside surface of the first ring groove, and the deformation of the head of the piston is greatest. But the difference between the long and short axes of the bottom cross section is greatest.
文摘Based on the loading conditions of engine, applying difference method to solve the hydrodynamic lubrication equation of piston skirt movement, the force acting on piston skirt and the moment on wrist pin were obtained. A computer program for simulating the piston second order motion was conducted to calculate the lateral motion of the upper part and the bottom part of piston skirts of the engine of automotive model CA1091. From the simulated result, the maximal impacting phase and the maximal impacting region of the piston were obtained. The result can be used for designing engine, diagnosing the noise of piston knocking cylinder wall and explaining many practical fault phenomena in theory.
基金National Natural Science Foundation(50375078)Key Discipline Construction Program of Beijing.
文摘The micro free-piston swing engine (MFPSE) is a new structure, free-piston internal combustion engine. The dynamic model integrated MFPSE with a power generator and thermodynamic models in compression, power and scavenge processes based on the open thermodynamic systems were presented. A simulation was executed at given geometric parameters and initial conditions. The results manifest that the working principle of MFPSE is feasible.
基金Supported by the National Natural Science Foundation of China(51006010)the Program of Introducing Talents of Discipline to Universities(B12022)
文摘The compression stroke characteristics of free-piston engine generator were studied. The numerical model of the compression stroke was established based on thermodynamics and dynamics equation,and the leak loss,heat loss and friction loss were considered. Through solving numerical equations,the in-cylinder pressure of compression stroke under different compression ratios was calculated,energy transfer and conversion process was analyzed,and the calculated results were experimentally verified. The results showed that the actual effective output of electronic energy and the compression energy stored in the com-pressed gas accounted for about 70%. The compression energy gradually increased with the increasing com-pression ratio. When the compression ratio was more than 7. 5,the actual compression energy increased slowly and the energy error between simulation and test decreased.
文摘On the basis of theoretical analysis and experimental rerearck, the vibration characteristics of the ZB1-107 bend axis piston pump that is wldely ed in mining machinery is studied in the paper, and the study provides the basis for pump fault diagnesis. The vibration signals of the rault-rree pump and tbe faulty pump have been compared in frequency domaln and it is round that tbere is obvious differeuce in their vibration frequency spectra. The experimentol results demonstrate that the raults, such as port plate wear and tear and the looseness or ball joint or the conuecting rod, can be effectively detected through vibration analysis.
文摘Heavy fuel aviation piston engines(HF-APEs)refer to the engine using fuels with high flash point,such as kerosene or light diesel.Here technique specifications of some classical foreign HF-APEs(Hirth3503,Zanzottera 498)are introduced.Recent progress and trend of fuel injection,fuel ignition,working cycle,intake charging,thermal management and electronic control of HF-APE are compared and summarized.Emphases are put on the technological difficulties,solutions and development tendency in the design,retrofitting and manufacturing of HF-APE aiming to provide references for the research of related area and the development of prototype HF-APE in China.
基金Supported by the National Key Laboratory Foundation Project(9140C3403010903)
文摘In order to improve lubricating characteristics of slippers in an axial piston pump, the combining center cavity slipper approach was proposed based on slipper shape and moving characteristic. The cylindrical coordinate was used in the lubricant area and mesh was made. The blockweight approach was implemented to deal with non-coincidence of mesh and shallow recess border in numerical method. The finite control volume method was applied in calculating pressure distribution. The flow conservation equation and film thickness model were resolved through Gauss-Siedel relaxation iteration. The calculation and analysis results indicate that compared to the slipper (1) slip- per pressure distribution is improved; (2) hydrodynamic pressure of the combining slipper is greatly increased; (3) inclining degree is greatly reduced; (4) negative pressure in lubricant film disappear. So the combining center cavity slipper is lubricated better.
基金Supported by the National Natural Science Foundation of China(51175039)
文摘The three dimensional temperature field of the gap between piston and cylinder was ob- tained by numerically solving energy equation. The boundary condition of the equation was given in the form of heat transfer coefficient, instead of solving the temperature field of solid parts. The tem- perature field was calculated both under high speed high pressure condition and low speed low pres- sure condition. The numerical result was compared to experimental result under low speed low pres- sure condition and showed good agreement. It was shown that the influence of heat transfer coeffi- cient on t'tim temperature was significant. The adiabatic condition was reasonable under low speed low pressure condition, but invalid under high speed high pressure condition. It was a good way to describe the influence of solid parts on temperature using heat transfer coefficient but avoiding sol- ving the temperature field of solids parts.
基金Supported by the National Natural Science Foundation of China(B2220110005)
文摘To experimentally match performance and structural features of an opposed-piston two- stroke engine ( OPTSE ), two calculation models, a one-dimensional ( 1-D ) model and a three-di- mensional (3-D) model, of the combined charging matching simulation of an OPTSE was established by using the GT-Power software. To test and verify the one dimensional model, the three-dimension- al computational fluid dynamics simulation model was established using AVL FIRE software. Cylinder pressure curves in these two models match perfectly, showing that it is reasonable to use the one-di- mensional model to simulate the work process of an OPTSE. Moreover, the effects of delivery ratio, nozzle ring diameter and exhaust back pressure on brake specific fuel consumption ( BSFC ) were studied.
基金Supported by the National Natural Science Foundation of China(51406013)
文摘A frequency compensation control method for the opposed-piston two-stroke folded-cranktrain( OPFC) diesel engine's common rail system is presented as a result of the study of the loop-shaping theory. A common rail working process and the classical frequency control theory are combined to construct a frequency restriction of common rail pressure. A frequency compensator is utilized to improve the robustness of multiplicative perturbations and disturbance. The loop-shaping method has been applied to design the common rail pressure controller of the OPFC diesel engine. Simulation and bench test results show that in the condition of perturbation that comes from the effect of injection,multi-injection,fuel pumping of a pre-cylinder,and instantaneous pressure fluctuation,the controller indicates high precision. Compared with the original controller,this method improves the control precision by 67. 3%.
基金Supported by the Basic Research Projects of National Ministries and Commissions(62201070215)
文摘In order to improve the thermal power conversion capacity of the internal combustion engine,combined with existing opposed-piston two-stroke engine( OP2S) and hydraulic free piston engine(HFPE),the integral structure for a newtype of opposed-piston hydraulic-output( OPHO) engine has been designed,an operating principle has been introduced,the composition of its synchronous drive mechanism has been carefully analyzed,and a mathematical model has been built. In addition,the kinematics models of both the mechanism and the conventional crank-link mechanism have been established by utilizing MATLAB,and the movement rules of the pivotal moving components have been obtained. According to the simulation results,the piston movement of this newtype of opposed-piston hydraulic-output engine reveals a prominent asymmetry compared to the conventional crank-link engine. Under a fixed engine revolving speed,the compression time of the opposedpiston hydraulic-output engine is shortened while the expanding time is lengthened,thus the gas turbulence intensity is strengthened around the top dead center( TDC) position. Meanwhile,the piston obtains a longer isometric process compared to conventional engines,which could be benefitial to enhance the combustion efficiency.
基金Supported by the National Natural Science Foundation of China(B2220110005)
文摘The effects of different flow forms on an opposed-piston two-stroke(OPTS)gasoline-directinjection(GDI)engine was studied by analyzing the mixture formation and combustion.Swirl was broken and dissipated gradually and the turbulence kinetic energy(TKE)was small in the compression process;however,tumble was strengthened and the TKE was strong in the compression process.For swirl around X axis(the axis of cylinder)and tumble around Y axis(the vertical direction of injector),droplets were attached to the cylinder liner by the centrifugal force and the mixture distribution was poor.For tumble around Zaxis(the direction of injector),the wall film in cylinder liner was thin and mixture distribution was homogeneous.Results showed that since the injector were installed on the wall of the cylinder liner in the OPTS-GDI engine,the spray angle was small and the mixture formation time was short.The 45° oblique axis tumble ratio of 1 was reasonable for the mixture formation and combustion for an OPTS-GDI engine.
文摘In both numerical simulation and experimental research for the piston of internal combustion engine, the verification foundations are always insufficient. The reason is the measurements for its transient temperature and stress under actual operation conditions are very difficult. A multi-channel measurement-storage technology is used in the engine bench experiment to measure the piston temperature and stress in real time. The temperature and stress changes in the engine operation process are obtained. They provide reliable instructive criteria for numerical analysis and experiment of the piston working state.