To enhance the recuperation rate of the mine and comply with the stipulations of green mining technology, it is vital to expeditiously recuperate the coal pillar resources in the final stage, thus preventing the consi...To enhance the recuperation rate of the mine and comply with the stipulations of green mining technology, it is vital to expeditiously recuperate the coal pillar resources in the final stage, thus preventing the considerable squandering of resources. The coal pillar resource of the main roadway and its branch roadway constitutes a significant recovery subject. Its coal pillar shape is regular and possesses a considerable strike distance, facilitating the arrangement of the coal pillar recovery working face (CPRWF) for mining operations. However, for the remaining coal pillars with a thick and hard roof (THF) and multiple tectonic zones, CPRWF encounters challenges in selecting an appropriate layout, managing excessive roof pressure, and predicting mining stress. Aiming at the roadway coal pillar group with THF and multi-structural areas in specific projects, a method of constructing multi-stage CPRWF by one side gob-side entry driving (GSED) and one side roadway reusing is proposed. Through theoretical calculation of roof fracture and numerical simulation verification, combined with field engineering experience and economic analysis, the width of the narrow coal pillar (NCP) in the GSED is determined to be 10 m and the length of the CPRWF is 65 m. Concurrently, the potential safety hazard that the roof will fall asymmetrically and THF is difficult to break during CPRWF mining after GSED is analyzed and verified. Then, a control method involving the pre-cutting of the roof in the reused roadway before mining is proposed. This method has been shown to facilitate the complete collapse of THF, reduce the degree of mine pressure, and facilitate the symmetrical breaking of the roof. Accordingly, a roof-cutting scheme based on a directional drilling rig, bidirectional shaped polyvinyl chloride (PVC) pipe, and emulsion explosive was devised, and the pre-splitting of 8.2 m THF was accomplished. Field observations indicate that directional cracks are evident in the roof, the coal wall is flat during CPRWF mining, and the overall level of mining pressure is within the control range. Therefore, the combined application of GSED and roof-cutting technology for coal pillar recovery has been successfully implemented, thereby providing new insights and engineering references for the construction and pressure relief mining of CPRWF.展开更多
The laminated overburden model(La Model)has been widely used for pillar design and stability analysis.As a boundary element program,the La Model program is sensitive to the boundary condition,which should be considere...The laminated overburden model(La Model)has been widely used for pillar design and stability analysis.As a boundary element program,the La Model program is sensitive to the boundary condition,which should be considered before creating the model.To eliminate the boundary effect in a La Model pillar stability analysis,a suitable boundary buffer zone is needed around the model edge.The radius of influence(R)and the abutment load extent(D)are two major factors that affect the stresses and displacements calculated in LaM odel.To determine the optimum buffer zone extent,a database of case histories was analyzed using the La Model program.Values for R and D were varied until a buffer zone having negligible influence on the pillar stability factor(SF)of the active mining zone(AMZ)was determined.展开更多
The stability of room mining coal pillars during their secondary mining for recovering coal was analyzed. An analysis was performed for the damage and instability mechanism of coal pillars recovered by the caving mini...The stability of room mining coal pillars during their secondary mining for recovering coal was analyzed. An analysis was performed for the damage and instability mechanism of coal pillars recovered by the caving mining method. During the damage progression of a single room coal pillar, the shape of the stress distribution in the pillar transformed from the initial stable saddle shape to the final arch-shaped distribution of critical instability. By combining the shapes of stress distribution in the coal pillars with the ultimate strength theory, the safe-stress value of coal pillar was obtained as 11.8 MPa. The mechanism of instability of coal pillar groups recovered by the caving mining method was explained by the domino effect. Since the room coal pillars mined and recovered by the traditional caving mining method were significantly influenced by the secondary mining during recovery, the coal pillars would go through a chain-type instability failure. Because of this limitation, the method of solid backfilling was proposed for mining and recovering room coal pillars, thus changing the transfer mechanism of stress caused by the secondary mining(recovery) of coal pillars. The mechanical model of the stope in the case of backfilling and recovering room coal pillars was built. The peak stress values inside coal pillars varied with the variance of backfilling ratio when the working face was advanced by 150 m. Furthermore, when the critical backfilling ratio was 80.6%, the instability failure of coal pillars would not occur during the solid backfill mining process. By taking Bandingliang Coal Mine as an example, the coal pillars' stability of stope under this backfilling ratio was studied, and a project scheme was designed.展开更多
Irregular plates are very common structures in engineering,such as ore structures in mining.In this work,the Galerkin solution to the problem of a Kirchhoff plate lying on the Winkler foundation with two edges simply ...Irregular plates are very common structures in engineering,such as ore structures in mining.In this work,the Galerkin solution to the problem of a Kirchhoff plate lying on the Winkler foundation with two edges simply supported and the other two clamped supported is derived.Coordinate transformation technique is used during the solving process so that the solution is suitable to irregular shaped plates.The mechanical model and the solution proposed are then used to model the crown pillars between two adjacent levels in Sanshandao gold mine,which uses backfill method for mining operation.After that,an objective function,which takes security,economic profits and filling effect into consideration,is built to evaluate design proposals.Thickness optimizations for crown pillars are finally conducted in both conditions that the vertical stiffness of the foundation is known and unknown.The procedure presented in the work provides the guidance in thickness designing of complex shaped crown pillars and the preparation of backfill materials,thus to achieve the best balance between security and profits.展开更多
Fetr6 is an underground mine using the stope-and-pillar mining method. As there was some evidence regarding pillar failure in this mine, improving works such as roof support and replacing existing pillars with concret...Fetr6 is an underground mine using the stope-and-pillar mining method. As there was some evidence regarding pillar failure in this mine, improving works such as roof support and replacing existing pillars with concrete pillars (CP) were carried out. During the construction of the second CP, in the space between the remaining pillars, one of the pillars failed leading to the progressive failure of other pillars until 4 000 m 2 of mine had collapsed within a few minutes. In this work, this phenomenon is described by applying both numerical and empirical methods and the respective results are compared. The results of numerical modelling are found to be closer to the actual condition than those of the empirical method. Also, a width-to-height (W/H) ratio less than 1, an inadequate support system and the absence of a detailed program for pillar recovery are shown to be the most important causes of the Domino failure in this mine.展开更多
When roadways are constructed above or adjacent to heavily mined regions, the ground subsidence caused by pillar collapse inflicts severe damage on these roadways. In this study, some surface subsidence events were fi...When roadways are constructed above or adjacent to heavily mined regions, the ground subsidence caused by pillar collapse inflicts severe damage on these roadways. In this study, some surface subsidence events were first reviewed to present roof caving characteristics caused by pillar failure. The bearing characteristic and failure pattern of a single pillar with or without effect of discontinuity were further numerically simulated using distinct element code(3 DEC). It was found that the spalling of pillar or slippage of discontinuity would damage the bearing capacity of pillar during the failure process. The stress at the pillar core could be greater than uniaxial compressive strength of the pillar. However, when a discontinuity runs through a pillar, the slippage of discontinuity would significantly degrade the bearing capacity of the pillar. In pillar support system, if any pillar unexpectedly degrades or loses its bearing capacity, the load transferred from the degraded pillar acts on neighboring pillars, and the shear force also increases at relevant positions. However, the roof cutting and surface subsidence characteristics would perform in different patterns. In some cases, surface subsides slowly;in the worst scenario, shock bump may be induced by pillar and roof collapse.展开更多
Based on the height of back-filled materials, thickness of ore body, height of boundary pillar and dipping angle of ore body and water pressure, the safety factors of all the pillars are calculated with the limit equi...Based on the height of back-filled materials, thickness of ore body, height of boundary pillar and dipping angle of ore body and water pressure, the safety factors of all the pillars are calculated with the limit equilibrium method. The calculation results present that the safety factors of pillars in Sections 19, 20, 24, 28 are less than 1.3, and those of unstable sections are identified preliminarily. Further, a numerical investigation in Sections 18, 20, 22, 24, 25 and 28 implemented with numerical code RFPA20 is employed to further validate the pillar performance and the stability of stopes. The numerical results show the pillars in Sections 18, 22 and 24 are stable and the designed pillar size is suitable. The width of the ore body near Section 28 averages 20 m, failure occurs in the left stope, but the boundary pillars near Section 28 maintain good performance. The pillars in Sections 20 and 25 are unstable which are mainly affected by the Faults F8 and F18. The existence of faults alters the stress distribution, failure mode and water inrush pathway. This work provides a meaningful standard for boundary pillar and stope design in a mine as it transitions from an open pit to underground.展开更多
In order to greatly improve adsorption capacity, the diatomite was pillared by polyhydroxyl-aluminum.A series of adsorption tests were conducted to obtain the optimum condition for pillared diatomite synthesis. The sc...In order to greatly improve adsorption capacity, the diatomite was pillared by polyhydroxyl-aluminum.A series of adsorption tests were conducted to obtain the optimum condition for pillared diatomite synthesis. The scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), surface area and porosity analyzer and micro-electrophoresis were used to determine pore structure and surface property.The pillared diatomite attaining the optimal adsorption densities (qe) of Pb^2+ and Cd^2+ was synthesized with the following conditions: Addition of pillaring solution containing Al3+-oligomers with a concentration range of 0.1-0.2 mol/L to a suspension containing Na+-diatomite to obtain the required Al/diatomite ratio of 10 mmol/g; synthesis temperature of 80 ℃ for 120 min; aging at a temperature of 105 ℃ for 16 h. The adsorption capacities of Pb^2+ and Cd^2+ on pillared diatomite increase by 23.79% and 27.36% compared with natural diatomite, respectively. The surface property of pillared diatomite is more favorable for ion adsorption than natural diatomite. The result suggests that diatomite can be modified by pillaring with polyhydroxyl-aluminum to improve its adsorption properties greatly.展开更多
A mechanical model for strain softening pillar is proposed considering the characteristics of progressive shear failure and strain localization. The pillar undergoes elastic, strain softening and slabbing stages. In t...A mechanical model for strain softening pillar is proposed considering the characteristics of progressive shear failure and strain localization. The pillar undergoes elastic, strain softening and slabbing stages. In the elastic stage, vertical compressive stress and deformation at upper end of pillar are uniform, while in the strain softening stage there appears nonuniform due to occurrence of shear bands, leading to the decrease of load-carrying capacity. In addition, the size of failure zone increases in the strain softening stage and reaches its maximum value when slabbing begins. In the latter two stages, the size of elastic core always decreases. In the slabbing stage, the size of failure zone remains a constant and the pillar becomes thinner. Total deformation of the pillar is derived by linearly elastic Hookes law and gradient-dependent plasticity where thickness of localization band is determined according to the characteristic length. Post-peak stiffness is proposed according to analytical solution of averaged compressive stress-average deformation curve. Instability criterion of the pillar and roof strata system is proposed analytically (using) instability condition given by Salamon. It is found that the constitutive parameters of material of pillar, the geometrical size of pillar and the number of shear bands influence the stability of the system; stress gradient controls the starting time of slabbing, however it has no influence on the post-peak stiffness of the pillar.展开更多
The instability of the pillar was discussed based on the potential energy principle and the cusp catastrophe theory, and a simplified mechanical model of the pillar was established considering the mining effect. The n...The instability of the pillar was discussed based on the potential energy principle and the cusp catastrophe theory, and a simplified mechanical model of the pillar was established considering the mining effect. The necessary-sufficient conditions, the jump value of displacement of pillar and the released energy expressions were deduced. The results show that the instability of the pillar is related to the properties of the rock, the external force and the relative stiffness of the elastic area to the plastic area. The instability of system is like to occur with the enlarging of the softening area or the decreasing of E/λ. The calculation done shows that the estimated results correspond to practical experience.展开更多
A simplified mechanical model of ultra-high pillar was established and its potential energy expression was derived under axial load on the basis of energy theory. Under critical conditions according to the nonlinear t...A simplified mechanical model of ultra-high pillar was established and its potential energy expression was derived under axial load on the basis of energy theory. Under critical conditions according to the nonlinear theory, the critical behaviors and the forming mechanism of pillar instability were discussed by external disturbance , such as stresses waves by blasting , axial force eccentricity ratherish and imperfections in pillar. The results show that the micro-disturbances attenuate with time and they are independence each other when pillar is in the stability state. Their effects on the stability of system are inessential. The correlation degree of disturbances increases sharply and various micro-disturbances are relative and nested reciprocally when the system is in critical state and they also cooperate with each other, which induces system to reach a new state.展开更多
Aiming at the difficulty in stress analysis for strata under pillars with actual bearing conditions, an approach was proposed to apply multi-sectional linear approximation to the characteristic curves of pillar loads,...Aiming at the difficulty in stress analysis for strata under pillars with actual bearing conditions, an approach was proposed to apply multi-sectional linear approximation to the characteristic curves of pillar loads, and stress of strata was calculated under pillars with linear load by calculation method for uniform load. This approach leads to a rapid analyzing method for strata stress under pillars with any form of loads. Through theoretical analysis, strata stress expressions for pillars under linear bearing conditions are obtained. In addition, two concepts, stress increase factor and stress factor, are proposed for the approximate analysis of strata stress by uniform load approximation method. It is also found that the stress increase factor of strata is related to the strata stress factor and the ratio of the minimum load on the pillar' two ends to the maximum one; and the distribution features of stress factors and the sizes of their influencing areas in strata influenced by overlying pillars are obtained. Combining with the gob pillar conditions of Jurassic coal seam in Tongxin Coal Mine, it is demonstrated that the results obtained by stress distribution analysis of the strata stress in non-influencing areas of pillars with linear bearing through uniform load approximation are in basic accordance with the results obtained for pillars under linear bearing condition. Therefore, it is feasible and accurate to calculate stress in non-influencing area in strata under pillars with linear bearing condition by uniform load calculation method.展开更多
基金Project(52204164) supported by the National Natural Science Foundation of ChinaProject(2023ZKPYSB01) supported by the Fundamental Research Funds for the Central Universities,China。
文摘To enhance the recuperation rate of the mine and comply with the stipulations of green mining technology, it is vital to expeditiously recuperate the coal pillar resources in the final stage, thus preventing the considerable squandering of resources. The coal pillar resource of the main roadway and its branch roadway constitutes a significant recovery subject. Its coal pillar shape is regular and possesses a considerable strike distance, facilitating the arrangement of the coal pillar recovery working face (CPRWF) for mining operations. However, for the remaining coal pillars with a thick and hard roof (THF) and multiple tectonic zones, CPRWF encounters challenges in selecting an appropriate layout, managing excessive roof pressure, and predicting mining stress. Aiming at the roadway coal pillar group with THF and multi-structural areas in specific projects, a method of constructing multi-stage CPRWF by one side gob-side entry driving (GSED) and one side roadway reusing is proposed. Through theoretical calculation of roof fracture and numerical simulation verification, combined with field engineering experience and economic analysis, the width of the narrow coal pillar (NCP) in the GSED is determined to be 10 m and the length of the CPRWF is 65 m. Concurrently, the potential safety hazard that the roof will fall asymmetrically and THF is difficult to break during CPRWF mining after GSED is analyzed and verified. Then, a control method involving the pre-cutting of the roof in the reused roadway before mining is proposed. This method has been shown to facilitate the complete collapse of THF, reduce the degree of mine pressure, and facilitate the symmetrical breaking of the roof. Accordingly, a roof-cutting scheme based on a directional drilling rig, bidirectional shaped polyvinyl chloride (PVC) pipe, and emulsion explosive was devised, and the pre-splitting of 8.2 m THF was accomplished. Field observations indicate that directional cracks are evident in the roof, the coal wall is flat during CPRWF mining, and the overall level of mining pressure is within the control range. Therefore, the combined application of GSED and roof-cutting technology for coal pillar recovery has been successfully implemented, thereby providing new insights and engineering references for the construction and pressure relief mining of CPRWF.
文摘The laminated overburden model(La Model)has been widely used for pillar design and stability analysis.As a boundary element program,the La Model program is sensitive to the boundary condition,which should be considered before creating the model.To eliminate the boundary effect in a La Model pillar stability analysis,a suitable boundary buffer zone is needed around the model edge.The radius of influence(R)and the abutment load extent(D)are two major factors that affect the stresses and displacements calculated in LaM odel.To determine the optimum buffer zone extent,a database of case histories was analyzed using the La Model program.Values for R and D were varied until a buffer zone having negligible influence on the pillar stability factor(SF)of the active mining zone(AMZ)was determined.
基金Project(2014ZDPY02)supported by the Fundamental Research Funds for the Central Universities
文摘The stability of room mining coal pillars during their secondary mining for recovering coal was analyzed. An analysis was performed for the damage and instability mechanism of coal pillars recovered by the caving mining method. During the damage progression of a single room coal pillar, the shape of the stress distribution in the pillar transformed from the initial stable saddle shape to the final arch-shaped distribution of critical instability. By combining the shapes of stress distribution in the coal pillars with the ultimate strength theory, the safe-stress value of coal pillar was obtained as 11.8 MPa. The mechanism of instability of coal pillar groups recovered by the caving mining method was explained by the domino effect. Since the room coal pillars mined and recovered by the traditional caving mining method were significantly influenced by the secondary mining during recovery, the coal pillars would go through a chain-type instability failure. Because of this limitation, the method of solid backfilling was proposed for mining and recovering room coal pillars, thus changing the transfer mechanism of stress caused by the secondary mining(recovery) of coal pillars. The mechanical model of the stope in the case of backfilling and recovering room coal pillars was built. The peak stress values inside coal pillars varied with the variance of backfilling ratio when the working face was advanced by 150 m. Furthermore, when the critical backfilling ratio was 80.6%, the instability failure of coal pillars would not occur during the solid backfill mining process. By taking Bandingliang Coal Mine as an example, the coal pillars' stability of stope under this backfilling ratio was studied, and a project scheme was designed.
基金Project (51504044) supported by the National Natural Science Foundation of ChinaProject (14KF05) supported by the Research Fund of the State Key Laboratory of Coal Resources and Mine Safety(CUMT),China+2 种基金Project (2015CDJXY) supported by the Fundamental Research Funds for the Central Universities,ChinaProject (2015M570607) supported by Postdoctoral Science FoundationProject (2011DA105287-MS201503) supported by the Independent Subject of State Key Laboratory of Coal Mine Disaster Dynamics and Control,China
文摘Irregular plates are very common structures in engineering,such as ore structures in mining.In this work,the Galerkin solution to the problem of a Kirchhoff plate lying on the Winkler foundation with two edges simply supported and the other two clamped supported is derived.Coordinate transformation technique is used during the solving process so that the solution is suitable to irregular shaped plates.The mechanical model and the solution proposed are then used to model the crown pillars between two adjacent levels in Sanshandao gold mine,which uses backfill method for mining operation.After that,an objective function,which takes security,economic profits and filling effect into consideration,is built to evaluate design proposals.Thickness optimizations for crown pillars are finally conducted in both conditions that the vertical stiffness of the foundation is known and unknown.The procedure presented in the work provides the guidance in thickness designing of complex shaped crown pillars and the preparation of backfill materials,thus to achieve the best balance between security and profits.
文摘Fetr6 is an underground mine using the stope-and-pillar mining method. As there was some evidence regarding pillar failure in this mine, improving works such as roof support and replacing existing pillars with concrete pillars (CP) were carried out. During the construction of the second CP, in the space between the remaining pillars, one of the pillars failed leading to the progressive failure of other pillars until 4 000 m 2 of mine had collapsed within a few minutes. In this work, this phenomenon is described by applying both numerical and empirical methods and the respective results are compared. The results of numerical modelling are found to be closer to the actual condition than those of the empirical method. Also, a width-to-height (W/H) ratio less than 1, an inadequate support system and the absence of a detailed program for pillar recovery are shown to be the most important causes of the Domino failure in this mine.
基金Projects(51838001, 51878070, 51904101) supported by the National Natural Science Foundation of ChinaProject(2019SK2171) supported by the Key Research and Development Program of Hunan Province, ChinaProject(kfj190402) supported by the Open Fund of Engineering Research Center of Catastrophic Prophylaxis and Treatment of Road & Traffic Safety of Ministry of Education(Changsha University of Science & Technology), China。
文摘When roadways are constructed above or adjacent to heavily mined regions, the ground subsidence caused by pillar collapse inflicts severe damage on these roadways. In this study, some surface subsidence events were first reviewed to present roof caving characteristics caused by pillar failure. The bearing characteristic and failure pattern of a single pillar with or without effect of discontinuity were further numerically simulated using distinct element code(3 DEC). It was found that the spalling of pillar or slippage of discontinuity would damage the bearing capacity of pillar during the failure process. The stress at the pillar core could be greater than uniaxial compressive strength of the pillar. However, when a discontinuity runs through a pillar, the slippage of discontinuity would significantly degrade the bearing capacity of the pillar. In pillar support system, if any pillar unexpectedly degrades or loses its bearing capacity, the load transferred from the degraded pillar acts on neighboring pillars, and the shear force also increases at relevant positions. However, the roof cutting and surface subsidence characteristics would perform in different patterns. In some cases, surface subsides slowly;in the worst scenario, shock bump may be induced by pillar and roof collapse.
基金Projects(1004025,51174044,50934006)supported by the National Natural Science FoundationProject(2011AA060400)supported by the National High Technique Research and Development Program of ChinaProject(Sklgduek1113)supported by Funds of the State Key Laboratory for Geomechanics&Deep Underground Engineering,Chinese University of Mining and Technology,China
文摘Based on the height of back-filled materials, thickness of ore body, height of boundary pillar and dipping angle of ore body and water pressure, the safety factors of all the pillars are calculated with the limit equilibrium method. The calculation results present that the safety factors of pillars in Sections 19, 20, 24, 28 are less than 1.3, and those of unstable sections are identified preliminarily. Further, a numerical investigation in Sections 18, 20, 22, 24, 25 and 28 implemented with numerical code RFPA20 is employed to further validate the pillar performance and the stability of stopes. The numerical results show the pillars in Sections 18, 22 and 24 are stable and the designed pillar size is suitable. The width of the ore body near Section 28 averages 20 m, failure occurs in the left stope, but the boundary pillars near Section 28 maintain good performance. The pillars in Sections 20 and 25 are unstable which are mainly affected by the Faults F8 and F18. The existence of faults alters the stress distribution, failure mode and water inrush pathway. This work provides a meaningful standard for boundary pillar and stope design in a mine as it transitions from an open pit to underground.
基金Project(12JJ8016)supported by the Hunan Provincial Natural Science Foundation of ChinaProject(CX2012B317)supported by Hunan Provincial Innovation Foundation For Postgraduate,ChinaProject(2006180)supported by the Hunan Key Discipline Construction Found of Environmental Science,China
文摘In order to greatly improve adsorption capacity, the diatomite was pillared by polyhydroxyl-aluminum.A series of adsorption tests were conducted to obtain the optimum condition for pillared diatomite synthesis. The scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), surface area and porosity analyzer and micro-electrophoresis were used to determine pore structure and surface property.The pillared diatomite attaining the optimal adsorption densities (qe) of Pb^2+ and Cd^2+ was synthesized with the following conditions: Addition of pillaring solution containing Al3+-oligomers with a concentration range of 0.1-0.2 mol/L to a suspension containing Na+-diatomite to obtain the required Al/diatomite ratio of 10 mmol/g; synthesis temperature of 80 ℃ for 120 min; aging at a temperature of 105 ℃ for 16 h. The adsorption capacities of Pb^2+ and Cd^2+ on pillared diatomite increase by 23.79% and 27.36% compared with natural diatomite, respectively. The surface property of pillared diatomite is more favorable for ion adsorption than natural diatomite. The result suggests that diatomite can be modified by pillaring with polyhydroxyl-aluminum to improve its adsorption properties greatly.
文摘A mechanical model for strain softening pillar is proposed considering the characteristics of progressive shear failure and strain localization. The pillar undergoes elastic, strain softening and slabbing stages. In the elastic stage, vertical compressive stress and deformation at upper end of pillar are uniform, while in the strain softening stage there appears nonuniform due to occurrence of shear bands, leading to the decrease of load-carrying capacity. In addition, the size of failure zone increases in the strain softening stage and reaches its maximum value when slabbing begins. In the latter two stages, the size of elastic core always decreases. In the slabbing stage, the size of failure zone remains a constant and the pillar becomes thinner. Total deformation of the pillar is derived by linearly elastic Hookes law and gradient-dependent plasticity where thickness of localization band is determined according to the characteristic length. Post-peak stiffness is proposed according to analytical solution of averaged compressive stress-average deformation curve. Instability criterion of the pillar and roof strata system is proposed analytically (using) instability condition given by Salamon. It is found that the constitutive parameters of material of pillar, the geometrical size of pillar and the number of shear bands influence the stability of the system; stress gradient controls the starting time of slabbing, however it has no influence on the post-peak stiffness of the pillar.
基金Project(50274074) supported by the National Natural Science Foundation of China
文摘The instability of the pillar was discussed based on the potential energy principle and the cusp catastrophe theory, and a simplified mechanical model of the pillar was established considering the mining effect. The necessary-sufficient conditions, the jump value of displacement of pillar and the released energy expressions were deduced. The results show that the instability of the pillar is related to the properties of the rock, the external force and the relative stiffness of the elastic area to the plastic area. The instability of system is like to occur with the enlarging of the softening area or the decreasing of E/λ. The calculation done shows that the estimated results correspond to practical experience.
文摘A simplified mechanical model of ultra-high pillar was established and its potential energy expression was derived under axial load on the basis of energy theory. Under critical conditions according to the nonlinear theory, the critical behaviors and the forming mechanism of pillar instability were discussed by external disturbance , such as stresses waves by blasting , axial force eccentricity ratherish and imperfections in pillar. The results show that the micro-disturbances attenuate with time and they are independence each other when pillar is in the stability state. Their effects on the stability of system are inessential. The correlation degree of disturbances increases sharply and various micro-disturbances are relative and nested reciprocally when the system is in critical state and they also cooperate with each other, which induces system to reach a new state.
基金Project(51174192) supported by the National Natural Science Foundation of ChinaProject(BRA2010024) supported by"333"Training Foundation of Jiangsu Province,ChinaProject(CXLX12_0964) supported by Innovation Project of Graduate Students Training of Jiangsu Province,China
文摘Aiming at the difficulty in stress analysis for strata under pillars with actual bearing conditions, an approach was proposed to apply multi-sectional linear approximation to the characteristic curves of pillar loads, and stress of strata was calculated under pillars with linear load by calculation method for uniform load. This approach leads to a rapid analyzing method for strata stress under pillars with any form of loads. Through theoretical analysis, strata stress expressions for pillars under linear bearing conditions are obtained. In addition, two concepts, stress increase factor and stress factor, are proposed for the approximate analysis of strata stress by uniform load approximation method. It is also found that the stress increase factor of strata is related to the strata stress factor and the ratio of the minimum load on the pillar' two ends to the maximum one; and the distribution features of stress factors and the sizes of their influencing areas in strata influenced by overlying pillars are obtained. Combining with the gob pillar conditions of Jurassic coal seam in Tongxin Coal Mine, it is demonstrated that the results obtained by stress distribution analysis of the strata stress in non-influencing areas of pillars with linear bearing through uniform load approximation are in basic accordance with the results obtained for pillars under linear bearing condition. Therefore, it is feasible and accurate to calculate stress in non-influencing area in strata under pillars with linear bearing condition by uniform load calculation method.