Sudden earthquakes pose a threat to the running safety of trains on high-speed railway bridges,and the stiffness of piers is one of the factors affecting the dynamic response of train-track-bridge system.In this paper...Sudden earthquakes pose a threat to the running safety of trains on high-speed railway bridges,and the stiffness of piers is one of the factors affecting the dynamic response of train-track-bridge system.In this paper,a experiment of a train running on a high-speed railway bridge is performed based on a dynamic experiment system,and the corresponding numerical model is established.The reliability of the numerical model is verified by experiments.Then,the experiment and numerical data are analyzed to reveal the pier height effects on the running safety of trains on bridges.The results show that when the pier height changes,the frequency of the bridge below the 30 m pier height changes greater;the increase of pier height causes the transverse fundamental frequency of the bridge close to that of the train,and the shaking angle and lateral displacement of the train are the largest for bridge with 50 m pier,which increases the risk of derailment;with the pier height increases from 8 m to 50 m,the derailment coefficient obtained by numerical simulations increases by 75% on average,and the spectral intensity obtained by experiments increases by 120% on average,two indicators exhibit logarithmic variation.展开更多
In order to predict the local scour hole and its evaluation around a cylindrical bridge pier, the computational fluid dynamics (CFD) and theories of sediment movement and transport were employed to carry out numeric...In order to predict the local scour hole and its evaluation around a cylindrical bridge pier, the computational fluid dynamics (CFD) and theories of sediment movement and transport were employed to carry out numerical simulations. In the numerical method, the time-averaged Reynolds Navier-Stokes equations and the standard k-e model were first used to simulate the three-dimensional flow field around a bridge pier fixed on river bed. The transient shear stress on river bed was treated as a crucial hydrodynamic mechanism when handling sediment incipience and transport. Then, river-bed volumetric sediment transport was calculated, followed by the modification of the river bed altitude and configuration. Boundary adaptive mesh technique was employed to modify the grid system with changed river-bed boundary. The evolution of local scour around a cylindrical bridge pier was presented. The numerical results represent the flow pattern and mechanism during the pier scouring, with a good prediction of the maximum scour hole depth compared with test results.展开更多
According to the engineering features of higher pile-column bridge pier in mountainous area, a clamped beam mechanical model was set up by synthetically analyzing the higher pile-column bridge pier buckling mechanism....According to the engineering features of higher pile-column bridge pier in mountainous area, a clamped beam mechanical model was set up by synthetically analyzing the higher pile-column bridge pier buckling mechanism. Based on the catastrophe theory, the cusp catastrophe model of higher pile-column bridge pier was established by the determination of its potential fimction and bifurcation set equation, the necessary instability conditions of high pile-column bridge pier were deduced, and the determination method for column-buckling and lateral displacement of high pile-column bridge pier was derived. The comparison between the experimental and calculated results show that the calculated curves agree with testing curves and the method is reasonable and effective.展开更多
In order to study bearing characteristics of bridge pile at steep slope under complex loads in mountians, according to double pile-column bridge piers engineering at steep slope and test models in laboratory, finite e...In order to study bearing characteristics of bridge pile at steep slope under complex loads in mountians, according to double pile-column bridge piers engineering at steep slope and test models in laboratory, finite element analysis of pile-column bridge piers was carried out using software ADINA under different loadings, such as horizontal loading in the longitudinal direction along bridge, vertical loadings, slope top loadings and complex loadings. The numerical simulation results show that displacements of front pile pier top and back pile pier top are different under horizontal loadings in the longitudinal direction along bridge or vertical loadings, the displacements of front pile pier top are higher than those of back pile pier top, and its difference increases with the increase of loadings. Vertical displacements will also appear under slope top loadings, and displacements of front pier top are higher than those of back pier top too, while its difference reduces with the increase of loadings. Displacements of both front pile pier top and back pile pier top under comlex loading are larger than those under single loading.展开更多
Jiangyin Yangtze highway bridge is a suspension bridge with main span 1 385 m. The south tower pier is located on a 70 m bedrock slope with bedding plane of strata tipping to the river channel and several weak interca...Jiangyin Yangtze highway bridge is a suspension bridge with main span 1 385 m. The south tower pier is located on a 70 m bedrock slope with bedding plane of strata tipping to the river channel and several weak intercalated layers. The stability of the tower pier is one of the main engineering geologic problems. On the basis of investigation and survey of relevant geologic condition analyses, the geomechanical model experiments are carried out for stability study of various foundation alternatives’ advantages and disadvantages. Pile foundation has been finally adopted and constructed, and this is justified by practice.展开更多
In seismic design of tapered high pier, the analysis of natural vibration frequency is of great importance. According to the engineering features of tapered high pier in mountainous area, a vibration calculation model...In seismic design of tapered high pier, the analysis of natural vibration frequency is of great importance. According to the engineering features of tapered high pier in mountainous area, a vibration calculation model was set up considering the tapered pier characteristics and pile-soil interaction. Based on Southwell frequency composition theory, it consists of elastic deformation of bridge pier and the rigid deformation of group piles, which are respectively solved by the finite-element method and energy method, and then the natural frequency is derived. The comparison between the measured and calculated results shows that the calculation errors with and without considering pile-soil interaction are 4.9% and 14.7%, respectively. Additionally, the main parameters (pier height, section variation coefficient and lateral foundation horizontal proportional coefficient) affecting natural frequency were investigated. The result shows that natural frequency ascends with the increase of the lateral foundation horizontal proportional coefficient; and it is quite necessary to consider the pile-soil interaction in natural frequency calculation of tapered high pier.展开更多
利用超高性能混凝土(ultra high performance concrete, UHPC)材料特性,提出一种针对预制拼装桥墩的重力灌浆构造,即采用UHPC灌浆并依靠立柱自身重力完成拼接的插槽式连接构造。为研究该形式桥墩的抗震性能,设计完成了三个桥墩的拟静力...利用超高性能混凝土(ultra high performance concrete, UHPC)材料特性,提出一种针对预制拼装桥墩的重力灌浆构造,即采用UHPC灌浆并依靠立柱自身重力完成拼接的插槽式连接构造。为研究该形式桥墩的抗震性能,设计完成了三个桥墩的拟静力试验,分别为整体现浇墩Z1、新型插槽式连接墩P1及现有“I型”连接墩P2,并采用OpenSees有限元软件做模拟分析,与试验结果对比分析。结果表明:三个桥墩的破坏形式一致,均为弯曲破坏;Z1墩与P1墩滞回曲线呈梭形,滞回环较为饱满,且相同位移加载循环下的滞回路径较为吻合,P2墩接口处钢筋与混凝土间黏结滑移影响较大,导致滞回环面积减小,桥墩整体滞回耗能能力降低;P1墩的耗能能力较Z1墩和P2墩分别提升7.0%、10.7%,呈现峰值荷载小、失效速率慢、极限位移大、滞回耗能多的骨架趋势。试验结果与有限元模拟结果较为吻合,抗震性能参数差幅在10.0%以内,新型插槽式连接墩可应用于实际工程。展开更多
基金Projects(52022113,52278546)supported by the National Natural Science Foundation of ChinaProject(2020EEEVL0403)supported by the China Earthquake Administration。
文摘Sudden earthquakes pose a threat to the running safety of trains on high-speed railway bridges,and the stiffness of piers is one of the factors affecting the dynamic response of train-track-bridge system.In this paper,a experiment of a train running on a high-speed railway bridge is performed based on a dynamic experiment system,and the corresponding numerical model is established.The reliability of the numerical model is verified by experiments.Then,the experiment and numerical data are analyzed to reveal the pier height effects on the running safety of trains on bridges.The results show that when the pier height changes,the frequency of the bridge below the 30 m pier height changes greater;the increase of pier height causes the transverse fundamental frequency of the bridge close to that of the train,and the shaking angle and lateral displacement of the train are the largest for bridge with 50 m pier,which increases the risk of derailment;with the pier height increases from 8 m to 50 m,the derailment coefficient obtained by numerical simulations increases by 75% on average,and the spectral intensity obtained by experiments increases by 120% on average,two indicators exhibit logarithmic variation.
基金Project(50978095) supported by the National Natural Science Foundation of ChinaProject(IRT0917) supported by the Program for Changjiang Scholars and Innovative Research Team in Chinese UniversityProject supported by China Scholarship Council
文摘In order to predict the local scour hole and its evaluation around a cylindrical bridge pier, the computational fluid dynamics (CFD) and theories of sediment movement and transport were employed to carry out numerical simulations. In the numerical method, the time-averaged Reynolds Navier-Stokes equations and the standard k-e model were first used to simulate the three-dimensional flow field around a bridge pier fixed on river bed. The transient shear stress on river bed was treated as a crucial hydrodynamic mechanism when handling sediment incipience and transport. Then, river-bed volumetric sediment transport was calculated, followed by the modification of the river bed altitude and configuration. Boundary adaptive mesh technique was employed to modify the grid system with changed river-bed boundary. The evolution of local scour around a cylindrical bridge pier was presented. The numerical results represent the flow pattern and mechanism during the pier scouring, with a good prediction of the maximum scour hole depth compared with test results.
基金Project(50578060) supported by the National Natural Science Foundation of China
文摘According to the engineering features of higher pile-column bridge pier in mountainous area, a clamped beam mechanical model was set up by synthetically analyzing the higher pile-column bridge pier buckling mechanism. Based on the catastrophe theory, the cusp catastrophe model of higher pile-column bridge pier was established by the determination of its potential fimction and bifurcation set equation, the necessary instability conditions of high pile-column bridge pier were deduced, and the determination method for column-buckling and lateral displacement of high pile-column bridge pier was derived. The comparison between the experimental and calculated results show that the calculated curves agree with testing curves and the method is reasonable and effective.
基金Projects(50878083,50578060)supported by the National Natural Science Foundation of ChinaProject(200831878531)supported by the Ministry of Transportation of China
文摘In order to study bearing characteristics of bridge pile at steep slope under complex loads in mountians, according to double pile-column bridge piers engineering at steep slope and test models in laboratory, finite element analysis of pile-column bridge piers was carried out using software ADINA under different loadings, such as horizontal loading in the longitudinal direction along bridge, vertical loadings, slope top loadings and complex loadings. The numerical simulation results show that displacements of front pile pier top and back pile pier top are different under horizontal loadings in the longitudinal direction along bridge or vertical loadings, the displacements of front pile pier top are higher than those of back pile pier top, and its difference increases with the increase of loadings. Vertical displacements will also appear under slope top loadings, and displacements of front pier top are higher than those of back pier top too, while its difference reduces with the increase of loadings. Displacements of both front pile pier top and back pile pier top under comlex loading are larger than those under single loading.
文摘Jiangyin Yangtze highway bridge is a suspension bridge with main span 1 385 m. The south tower pier is located on a 70 m bedrock slope with bedding plane of strata tipping to the river channel and several weak intercalated layers. The stability of the tower pier is one of the main engineering geologic problems. On the basis of investigation and survey of relevant geologic condition analyses, the geomechanical model experiments are carried out for stability study of various foundation alternatives’ advantages and disadvantages. Pile foundation has been finally adopted and constructed, and this is justified by practice.
基金Project(50708033) supported by the National Natural Science Foundation of China
文摘In seismic design of tapered high pier, the analysis of natural vibration frequency is of great importance. According to the engineering features of tapered high pier in mountainous area, a vibration calculation model was set up considering the tapered pier characteristics and pile-soil interaction. Based on Southwell frequency composition theory, it consists of elastic deformation of bridge pier and the rigid deformation of group piles, which are respectively solved by the finite-element method and energy method, and then the natural frequency is derived. The comparison between the measured and calculated results shows that the calculation errors with and without considering pile-soil interaction are 4.9% and 14.7%, respectively. Additionally, the main parameters (pier height, section variation coefficient and lateral foundation horizontal proportional coefficient) affecting natural frequency were investigated. The result shows that natural frequency ascends with the increase of the lateral foundation horizontal proportional coefficient; and it is quite necessary to consider the pile-soil interaction in natural frequency calculation of tapered high pier.
文摘利用超高性能混凝土(ultra high performance concrete, UHPC)材料特性,提出一种针对预制拼装桥墩的重力灌浆构造,即采用UHPC灌浆并依靠立柱自身重力完成拼接的插槽式连接构造。为研究该形式桥墩的抗震性能,设计完成了三个桥墩的拟静力试验,分别为整体现浇墩Z1、新型插槽式连接墩P1及现有“I型”连接墩P2,并采用OpenSees有限元软件做模拟分析,与试验结果对比分析。结果表明:三个桥墩的破坏形式一致,均为弯曲破坏;Z1墩与P1墩滞回曲线呈梭形,滞回环较为饱满,且相同位移加载循环下的滞回路径较为吻合,P2墩接口处钢筋与混凝土间黏结滑移影响较大,导致滞回环面积减小,桥墩整体滞回耗能能力降低;P1墩的耗能能力较Z1墩和P2墩分别提升7.0%、10.7%,呈现峰值荷载小、失效速率慢、极限位移大、滞回耗能多的骨架趋势。试验结果与有限元模拟结果较为吻合,抗震性能参数差幅在10.0%以内,新型插槽式连接墩可应用于实际工程。