期刊文献+
共找到269篇文章
< 1 2 14 >
每页显示 20 50 100
基于PID型模糊神经网络的火电站汽包压力控制 被引量:2
1
作者 陈彦桥 王印松 +1 位作者 刘吉臻 曾德良 《控制理论与应用》 EI CAS CSCD 北大核心 2003年第4期627-629,共3页
为克服火电站燃料-汽包压力调节对象的非线性、时变和纯迟延特性,采用含自回归神经元的PID型模糊神经网络作为汽包压力控制器,进行协调控制系统的设计。仿真研究表明,这种初值易选、学习能力较强的模糊神经网络控制器可以克服该对象的... 为克服火电站燃料-汽包压力调节对象的非线性、时变和纯迟延特性,采用含自回归神经元的PID型模糊神经网络作为汽包压力控制器,进行协调控制系统的设计。仿真研究表明,这种初值易选、学习能力较强的模糊神经网络控制器可以克服该对象的时变性和随机性干扰。 展开更多
关键词 火电站 汽包压力控制 pid型模糊神经网络 协调控制系统
在线阅读 下载PDF
基于PID型模糊神经网络的火电站单元机组协调控制 被引量:11
2
作者 陈彦桥 王印松 +1 位作者 刘吉臻 曾德良 《动力工程》 CSCD 北大核心 2003年第1期2219-2223,共5页
针对火电站机炉协调控制对象的非线性、时变和纯迟延的特性 ,采用了一种 PID型模糊控制器[1 ] 。为了使此控制器具有自学习功能 ,提出了一种包含一个自回归神经元的 5层模糊神经网络 ,并根据梯度下降算法 ,给出了它各层权值的修正算法... 针对火电站机炉协调控制对象的非线性、时变和纯迟延的特性 ,采用了一种 PID型模糊控制器[1 ] 。为了使此控制器具有自学习功能 ,提出了一种包含一个自回归神经元的 5层模糊神经网络 ,并根据梯度下降算法 ,给出了它各层权值的修正算法。通过对参考文献 [2 ]的模型进行仿真研究 ,证明使用这种初值易选、学习能力较强的模糊神经网络控制器可以克服协调控制对象的时变性和随机性干扰 ,大大改善了控制品质。图6表 1参 展开更多
关键词 pid 模糊神经网络 火电站 协调控制 火电机组 自学习功能
在线阅读 下载PDF
一种PID型模糊神经网络控制器 被引量:8
3
作者 王印松 刘武林 《系统仿真学报》 CAS CSCD 2003年第3期389-392,共4页
为了使一种基于两维控制规则基的PID型模糊控制器具有参数在线学习功能,提出了一种包含一个自回归神经元的五层模糊神经网络,并根据梯度下降法,给出了它各层权值的修正算法,该网络可以在反馈控制系统中作为一个自学习控制器来使用。最后... 为了使一种基于两维控制规则基的PID型模糊控制器具有参数在线学习功能,提出了一种包含一个自回归神经元的五层模糊神经网络,并根据梯度下降法,给出了它各层权值的修正算法,该网络可以在反馈控制系统中作为一个自学习控制器来使用。最后,根据有关定理,给出并证明了该网络各层权值学习速率的收敛准则。 展开更多
关键词 模糊逻辑 神经网络 模糊神经网络 学习速率 pid控制
在线阅读 下载PDF
基于卷积神经网络和模糊PID的掘进机截割控制系统研究 被引量:2
4
作者 李英娜 崔彦平 +2 位作者 安博烁 刘百健 靳建伟 《工矿自动化》 北大核心 2025年第1期61-70,137,共11页
针对悬臂式掘进机在掘进过程中面对煤岩硬度复杂变化时适应性不足、系统稳定性低等问题,提出一种基于卷积神经网络(CNN)及模糊PID的掘进机截割控制系统,该系统包括巷道断面成形特性和智能截割控制策略2个部分,其中掘进机智能截割控制策... 针对悬臂式掘进机在掘进过程中面对煤岩硬度复杂变化时适应性不足、系统稳定性低等问题,提出一种基于卷积神经网络(CNN)及模糊PID的掘进机截割控制系统,该系统包括巷道断面成形特性和智能截割控制策略2个部分,其中掘进机智能截割控制策略由CNN煤岩硬度动态感知模块和截割臂摆速模糊PID控制模块组成。提出一种有效的截割路径,使截割头沿规划路径从上至下进行煤岩截割,以提高断面完整性,减小掘进方向的误差。采用CNN煤岩硬度动态感知模块分析采集的截割电动机电流、截割臂振动加速度、回转油缸压力数据信息,以感知煤岩特性;采用截割臂摆速模糊PID控制模块对感知后的数据进行模糊化与解模糊化处理,输出相应控制参数信号;电液比例阀根据接收到的信号控制液压油的流量和压力,通过阀控液压缸控制截割臂摆速,实现截割臂摆速的自适应控制。现场实验结果表明:当掘进机截割较软介质与煤时,截割臂以高摆速工作;当掘进机截割复杂岩层时,摆速随截割信号的增大而降低,截割信号在0~1之间变动;当掘进机截割较硬岩层时,截割载荷信号接近1,截割臂的摆速降低至0。 展开更多
关键词 悬臂式掘进机 智能截割 截割臂摆速 截割路径 模糊pid控制 煤岩硬度动态感知 卷积神经网络
在线阅读 下载PDF
基于BP神经网络PID自适应控制的激振系统研究 被引量:7
5
作者 肖乾 葛一帆 +3 位作者 符远航 常运清 汪寒俊 宾浩翔 《机床与液压》 北大核心 2025年第1期52-57,共6页
针对跨座式单轨车辆滚动振动试验台激振系统的位置控制精度易受参数变化和外部干扰等因素的影响,提出基于BP神经网络PID自适应的控制策略。建立激振系统数学模型,并推导出其开环传递函数。基于Simulink搭建3-5-3结构的BP神经网络PID自... 针对跨座式单轨车辆滚动振动试验台激振系统的位置控制精度易受参数变化和外部干扰等因素的影响,提出基于BP神经网络PID自适应的控制策略。建立激振系统数学模型,并推导出其开环传递函数。基于Simulink搭建3-5-3结构的BP神经网络PID自适应控制器,并施加阶跃干扰信号以验证系统的抗干扰能力。仿真结果表明:与传统PID和模糊PID控制器相比,BP神经网络PID自适应控制下系统达到稳态所需时间分别快52%和50%,且超调量基本为0;在应对外界干扰时,该控制器能自动调整控制参数,系统以较快速度恢复至稳态,显著增强了系统的抗干扰能力,同时展现出良好的适应性和鲁棒性。 展开更多
关键词 激振系统 BP神经网络 模糊pid 学习速率
在线阅读 下载PDF
基于模糊神经网络PID的煤矿掘进机俯仰控制研究 被引量:5
6
作者 毛清华 陈彦璋 +3 位作者 马骋 王川伟 张飞 柴建权 《工矿自动化》 CSCD 北大核心 2024年第8期135-143,共9页
目前煤矿掘进机俯仰控制主要采用PID控制方法,在掘进机俯仰控制时变性与液压系统非线性情况下的控制精度不高。掘进机俯仰控制通过控制液压缸行程实现,将传统PID算法与模糊控制、神经网络等相结合,可有效提高液压缸行程控制精度。提出... 目前煤矿掘进机俯仰控制主要采用PID控制方法,在掘进机俯仰控制时变性与液压系统非线性情况下的控制精度不高。掘进机俯仰控制通过控制液压缸行程实现,将传统PID算法与模糊控制、神经网络等相结合,可有效提高液压缸行程控制精度。提出了一种基于模糊神经网络PID的煤矿掘进机俯仰控制方法。通过分析掘进机支撑部运动学关系,得到俯仰角与支撑部液压缸的数学关系;介绍了掘进机俯仰控制液压系统工作原理,建立了液压系统及其传递函数模型;将模糊控制与神经网络相结合,形成模糊神经网络,利用模糊神经网络优化PID控制参数,再结合支撑机构数学模型和液压系统传递函数模型,建立掘进机俯仰角模糊神经网络PID控制模型,实现煤矿掘进机俯仰机构自动精确控制。该方法可使掘进机俯仰机构更加快速、准确到达预设位置,解决掘进机俯仰控制中的时变性与非线性难题。仿真结果表明:模糊神经网络PID控制算法相较于模糊PID和PID控制算法,跟踪误差分别降低了69.34%和74.49%。通过液压缸位移控制模拟煤矿掘进机在突变工况和跟随工况下的俯仰控制,结果表明:模糊神经网络PID控制算法相比模糊PID和PID控制算法,俯仰控制跟踪误差最小,对位置信号的平均响应时间分别缩短了27.22%和50.33%,动态控制性能更好。 展开更多
关键词 掘进机俯仰控制 俯仰角 模糊神经网络pid 液压系统 液压缸位移控制 支撑机构
在线阅读 下载PDF
基于模糊神经网络的CFRP感应加热温度控制
7
作者 杨宁 付天宇 +1 位作者 赫彬 史学迁 《工程塑料应用》 北大核心 2025年第6期79-86,共8页
为了提高碳纤维复合材料(CFRP)感应加热过程中温度控制的精确性和抗干扰能力,提出了一种基于模糊神经网络PID的智能控制算法。针对CFRP感应加热系统中存在的非线性、大时滞性及抗干扰能力不足等问题,通过融合模糊逻辑的鲁棒推理能力与... 为了提高碳纤维复合材料(CFRP)感应加热过程中温度控制的精确性和抗干扰能力,提出了一种基于模糊神经网络PID的智能控制算法。针对CFRP感应加热系统中存在的非线性、大时滞性及抗干扰能力不足等问题,通过融合模糊逻辑的鲁棒推理能力与神经网络的自适应学习机制,设计了动态参数自整定控制器。首先,基于电磁-热耦合理论建立了CFRP感应加热系统的传递函数模型,并通过遗传算法对实验数据进行系统辨识。其次,构建了5层模糊神经网络架构(输入层、模糊化层、模糊规则层、神经网络层、反模糊化层),利用误差反向传播机制在线优化隶属度函数参数及模糊规则权重,实现PID参数的动态调整。在MATLAB/Simulink平台上进行仿真验证,结果表明,在无扰动条件下,模糊神经网络PID控制系统的超调量仅为2.4%,较传统PID(超调量19.4%)和模糊PID(超调量13.5%)分别降低87.6%和82.2%,调节时间为570 s,且系统震荡完全消除。在抗干扰测试中,加入阶跃扰动和正弦扰动后,模糊神经网络PID的恢复时间分别为600 s和620 s。实验证明,该方法通过动态优化模糊规则库和PID参数,显著提升了系统的控制精度和抗干扰能力,为解决CFRP感应加热工艺中的温度控制难题提供了有效方案。 展开更多
关键词 碳纤维 复合材料 电磁感应加热 pid控制 模糊神经网络控制
在线阅读 下载PDF
基于模糊神经网络的氢液化氦气压力PID控制 被引量:2
8
作者 李安琪 秦可欣 +1 位作者 杨思锋 兰玉岐 《低温工程》 CAS CSCD 北大核心 2024年第2期92-98,共7页
为了解决氢液化装置氦气压力调节系统超调量大、响应速度慢、调节时间长、控制参数无法在线整定等问题,针对系统具有非线性和时变性的特点,设计了基于模糊神经网络的PID控制器以及基于双曲正切函数的改进型激活函数。仿真结果表明:相比... 为了解决氢液化装置氦气压力调节系统超调量大、响应速度慢、调节时间长、控制参数无法在线整定等问题,针对系统具有非线性和时变性的特点,设计了基于模糊神经网络的PID控制器以及基于双曲正切函数的改进型激活函数。仿真结果表明:相比传统PID控制或模糊PID控制,采用模糊神经网络PID控制的系统动态性能显著改善,使得氢液化装置的氦气压力调节更加稳定可靠。 展开更多
关键词 氦气压力调节系统 模糊神经网络 pid控制 压力控制
在线阅读 下载PDF
基于模糊RBF神经网络PID的AUV姿态控制研究 被引量:5
9
作者 牛亮 党晓圆 +1 位作者 冯元 崔卫星 《传感器与微系统》 CSCD 北大核心 2024年第10期11-14,共4页
针对自主水下航行器(AUV)高精度、强鲁棒性的运动姿态控制需求,提出了一种径向基函数(RBF)神经网络结合模糊PID控制的水下机器人运动控制器;采用RBF神经网络对模糊PID控制器参数进行优化,有效解决了模糊PID控制过度依赖经验,难以应对水... 针对自主水下航行器(AUV)高精度、强鲁棒性的运动姿态控制需求,提出了一种径向基函数(RBF)神经网络结合模糊PID控制的水下机器人运动控制器;采用RBF神经网络对模糊PID控制器参数进行优化,有效解决了模糊PID控制过度依赖经验,难以应对水下复杂工况的问题。仿真结果表明:模糊RBF神经网络PID控制器在AUV姿态调节中表现出较传统模糊PID控制器更好的响应速度和抗干扰能力,有效改善了AUV姿态控制性能;经实际应用验证,控制器在复杂工况下可以快速收敛至期望姿态并维持稳定。 展开更多
关键词 自主水下航行器 运动控制 径向基函数神经网络 模糊pid 运动控制器
在线阅读 下载PDF
基于T-S模型的模糊神经网络PID控制 被引量:7
10
作者 姜映红 叶碧成 《控制工程》 CSCD 2006年第6期540-542,546,共4页
针对在非线性、时变不确定系统中,常规PID控制器难以获得满意效果的问题,仿照传统PID控制器结构,设计了一种基于T-S模型的模糊神经网络PID控制器。该控制器基于T-S模糊模型,将PID结构融入模糊控制中,充分发挥了模糊系统非线性、可解释... 针对在非线性、时变不确定系统中,常规PID控制器难以获得满意效果的问题,仿照传统PID控制器结构,设计了一种基于T-S模型的模糊神经网络PID控制器。该控制器基于T-S模糊模型,将PID结构融入模糊控制中,充分发挥了模糊系统非线性、可解释性的特点;然后又利用神经网络的学习算法,实现了对模糊控制器的参数调整,使控制器具有了适应时变、不确定系统的自学习和自组织能力。针对非线性、时变系统,将此控制器与传统PID控制器对比进行了仿真研究,并应用于啤酒发酵领域,其结果表明,该控制器取得了令人满意的效果。 展开更多
关键词 T-S模 模糊 神经网络 pid
在线阅读 下载PDF
基于BP神经网络的Smith-Fuzzy-PID算法在阀门定位中的应用研究 被引量:4
11
作者 谢涛 周邵萍 +1 位作者 王佳硕 裴梓敬 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第5期770-778,共9页
为解决气动调节阀控制过程中出现的超调大、精度低等问题,本文采用BP神经网络整定出较优的PID(Proportional Integral Derivative)控制参数,对Smith预估控制器以及模糊控制器进行设计,实现了基于BP神经网络的Smith-Fuzzy-PID控制方法。... 为解决气动调节阀控制过程中出现的超调大、精度低等问题,本文采用BP神经网络整定出较优的PID(Proportional Integral Derivative)控制参数,对Smith预估控制器以及模糊控制器进行设计,实现了基于BP神经网络的Smith-Fuzzy-PID控制方法。搭建了实验平台,通过阶跃响应实验来对控制方法进行验证,验证结果表明,提出的方法调节过程无超调,调节时间仅为1.9 s,定位精度在±0.5%以内,有效提高了系统的稳定性,实现了气动调节阀的快速精准定位。 展开更多
关键词 气动调节阀 Smith预估 模糊控制 BP神经网络 pid控制
在线阅读 下载PDF
基于模糊神经网络的精密角度定位PID控制 被引量:52
12
作者 张金龙 徐慧 +2 位作者 刘京南 内田敬久 郭怡倩 《仪器仪表学报》 EI CAS CSCD 北大核心 2012年第3期549-554,共6页
针对精密角度定位系统存在非线性、时变性,传统PID控制难以获得理想控制效果的问题,提出一种基于模糊神经网络的PID控制方法,将模糊控制、神经网络与PID控制相结合,采用3层前向网络、动态BP算法,利用神经网络的自学习和自适应能力,实时... 针对精密角度定位系统存在非线性、时变性,传统PID控制难以获得理想控制效果的问题,提出一种基于模糊神经网络的PID控制方法,将模糊控制、神经网络与PID控制相结合,采用3层前向网络、动态BP算法,利用神经网络的自学习和自适应能力,实时调整网络的权值,改变PID控制器的控制参数,整定出一组适用于控制对象的kp、ki、kd参数,实现精密角度定位PID控制的自适应和智能化。实验结果表明,采用BP神经网络整定的PID控制较传统的PID控制,控制性能有较大的提高,能有效提高定位精度,缩短定位时间。 展开更多
关键词 角度定位 模糊控制 BP神经网络 pid控制
在线阅读 下载PDF
改进型模糊神经网络PID控制器的设计与仿真 被引量:17
13
作者 吕晓丹 吴次南 《数据采集与处理》 CSCD 北大核心 2021年第2期365-373,共9页
传统PID控制器存在控制参数无法在线调整、控制效果差等问题。为了解决这些问题,本文提出了一款基于改进型模糊神经网络的智能PID控制器。该控制器不仅融合了模糊控制的推理能力和神经网络的学习能力,还创造性地将模糊规则参数化,使模... 传统PID控制器存在控制参数无法在线调整、控制效果差等问题。为了解决这些问题,本文提出了一款基于改进型模糊神经网络的智能PID控制器。该控制器不仅融合了模糊控制的推理能力和神经网络的学习能力,还创造性地将模糊规则参数化,使模糊规则也可以在线调整,进而提高了控制的准确性。同时,通过建构新型激活函数——IThLU函数,有效地避免梯度消失及梯度爆炸现象的发生,提高了控制的响应性。最终的仿真实验结果表明:这种改进型模糊神经网络智能PID控制器可以实现控制参数的在线实时调整,提高系统的响应性、稳定性和准确性,是对PID控制算法的有效改进。 展开更多
关键词 pid控制器 模糊神经网络 参数化模糊规则 IThLU激活函数 SIMULINK仿真
在线阅读 下载PDF
基于模糊径向基函数神经网络的PID算法球磨机控制系统研究 被引量:20
14
作者 程启明 程尹曼 +1 位作者 郑勇 汪明媚 《中国电机工程学报》 EI CSCD 北大核心 2009年第35期22-28,共7页
针对球磨机制粉系统的多变量、强耦合、非线性和时变性等特点,提出应用于球磨机对象控制的基于模糊径向基函数神经网络的PID控制算法。在这种控制系统中,PID控制器的控制参数采用模糊径向基函数神经网络进行自适应整定,系统控制参数采... 针对球磨机制粉系统的多变量、强耦合、非线性和时变性等特点,提出应用于球磨机对象控制的基于模糊径向基函数神经网络的PID控制算法。在这种控制系统中,PID控制器的控制参数采用模糊径向基函数神经网络进行自适应整定,系统控制参数采用混合优化算法,即首先采用混沌粒子群优化(particle swarm optimization,PSO)算法进行离线粗调,再采用BP算法进行在线细调,从而快速全局收敛得到最佳的PID控制参数。Matlab仿真结果表明,该控制系统有效地解决了球磨机这种复杂对象的控制问题,该系统控制参数的优化算法收敛快、不易陷入局部极小点,系统控制跟踪快、超调小、解耦好、鲁棒性和适应性强,控制品质优于传统PID解耦控制方法。 展开更多
关键词 球磨机 模糊径向基函数神经网络 混合优化算法 早熟判据 pid控制
在线阅读 下载PDF
基于模糊RBF神经网络的PID及其应用 被引量:20
15
作者 欧阳磊 黄友锐 黄宜庆 《计算机工程》 CAS CSCD 北大核心 2008年第22期231-233,共3页
针对传统的PID控制器参数固定而导致在控制中效果差的问题,提出一种基于模糊RBF神经网络智能PID控制器的设计方法。该方法结合了模糊控制的推理能力强与神经网络学习能力强的特点,将模糊控制与RBF神经网络相结合以在线调整PID控制器参数... 针对传统的PID控制器参数固定而导致在控制中效果差的问题,提出一种基于模糊RBF神经网络智能PID控制器的设计方法。该方法结合了模糊控制的推理能力强与神经网络学习能力强的特点,将模糊控制与RBF神经网络相结合以在线调整PID控制器参数,整定出一组适合于控制对象的kp,ki,kd参数。将算法运用到电机控制系统的PID参数寻优中,仿真结果表明基于此算法设计的PID控制器改善了电机控制系统的动态性能和稳定性。 展开更多
关键词 模糊控制 RBF神经网络 pid控制 电机控制系统
在线阅读 下载PDF
基于模糊神经网络的PID张力控制系统 被引量:7
16
作者 李革 贾元武 +1 位作者 张建新 赵匀 《纺织学报》 EI CAS CSCD 北大核心 2008年第6期109-112,共4页
由于卷绕张力控制系统是一个复杂、联动、时变、非线性系统,采用传统PID控制不能解决系统的非线性时变和PID参数的在线整定难等问题,为此提出一种控制算法——模糊神经网络PID复合控制方式,可根据系统的偏差及其变化率实时对PID的3个参... 由于卷绕张力控制系统是一个复杂、联动、时变、非线性系统,采用传统PID控制不能解决系统的非线性时变和PID参数的在线整定难等问题,为此提出一种控制算法——模糊神经网络PID复合控制方式,可根据系统的偏差及其变化率实时对PID的3个参数进行优化,达到具有最佳组合的PID控制,从而实现PID控制的自适应和智能化性能。通过MatLab软件,进行传统PID控制与模糊神经网络PID控制动态性能的仿真比较,结果表明系统采用模糊神经网络PID控制具有更好的动、静态特性和自适应性。 展开更多
关键词 张力控制 模糊神经网络 pid控制 仿真
在线阅读 下载PDF
仪用模糊神经网络PID控制器的研究 被引量:8
17
作者 白瑞林 梁宏 李军 《仪器仪表学报》 EI CAS CSCD 北大核心 1999年第6期603-605,共3页
针对仪用控制器的特点,本文提出了一种实用的仪用模糊神经网络PID控制器闭环设计方法,研制了模糊神经网络控制器设计开发软件,进行了大量的不同工业背景的计算机仿真,得出的控制器参数(网络权值,网络阀值)由单片机控制系统实... 针对仪用控制器的特点,本文提出了一种实用的仪用模糊神经网络PID控制器闭环设计方法,研制了模糊神经网络控制器设计开发软件,进行了大量的不同工业背景的计算机仿真,得出的控制器参数(网络权值,网络阀值)由单片机控制系统实现。实验表明:该方法在被控对象输出特性和D/A输出给执行器的动作特性上都具有令人满意的曲线效果。同时亦证明这是一种实现仪器仪表智能化的有效方法。 展开更多
关键词 仪器 仪表 模糊神经网络 pid 控制器
在线阅读 下载PDF
基于改进粒子群算法的模糊神经网络PID控制器设计 被引量:27
18
作者 王彦 邓勇 王超 《控制工程》 CSCD 北大核心 2012年第5期761-764,共4页
针对模糊神经网络PID控制器中参数初始值的设置对控制器性能影响大的问题,提出一种改进的PSO算法优化模糊神经网络PID控制器参数的设计方法。该方法采用实数编码的方式对控制器参数进行优化,并以ITAT指标作为改进的PS0优化算法的适应度... 针对模糊神经网络PID控制器中参数初始值的设置对控制器性能影响大的问题,提出一种改进的PSO算法优化模糊神经网络PID控制器参数的设计方法。该方法采用实数编码的方式对控制器参数进行优化,并以ITAT指标作为改进的PS0优化算法的适应度函数。实验仿真表明:经过改进的PSO算法优化的模糊神经网络PID控制器具有良好的动静态性能,响应速度更快,超调量更小,控制精度更高。 展开更多
关键词 粒子群优化算法 pid控制器 模糊神经网络 控制器参数优化 ITAT指标
在线阅读 下载PDF
一种基于模糊神经网络和遗传算法的智能PID控制器 被引量:5
19
作者 阎树田 刘鹏军 +1 位作者 苏玉瑞 乔伟峰 《兰州理工大学学报》 CAS 北大核心 2006年第4期42-45,共4页
常规的PID控制器参数整定方法需要被控对象的精确数学模型,且整定出的参数不能进行在线调整.而模糊控制和神经网络均不依赖被控对象的数学模型,且具有较强的自适应和自学习能力;遗传算法则是一种新型的全局优化方法.鉴于此,提出将模糊... 常规的PID控制器参数整定方法需要被控对象的精确数学模型,且整定出的参数不能进行在线调整.而模糊控制和神经网络均不依赖被控对象的数学模型,且具有较强的自适应和自学习能力;遗传算法则是一种新型的全局优化方法.鉴于此,提出将模糊控制、神经网络和遗传算法引入PID控制器的设计过程.首先,运用遗传算法优化隶属度函数的中心值和宽度,并借助模糊逻辑控制确定遗传算法中的交叉概率和变异概率.然后,再运用BP算法优化模糊神经网络的连接权系数.仿真结果表明,该方法提高了系统的自适应能力和抗干扰能力,增强了系统的鲁棒性. 展开更多
关键词 pid控制 模糊控制 模糊神经网络 BP算法 遗传算法
在线阅读 下载PDF
基于改进型PSO的模糊神经网络PM_(2.5)浓度预测 被引量:21
20
作者 马天成 刘大铭 +1 位作者 李雪洁 孙川川 《计算机工程与设计》 CSCD 北大核心 2014年第9期3258-3262,共5页
为科学合理地预测大气污染物PM2.5颗粒物浓度变化规律,分析PM2.5颗粒物浓度变化历史数据,综合判断外部条件(温度、风速、天气状况)和内部条件(其它污染物的浓度)对PM2.5颗粒物浓度变化的影响。采用一种改进型PSO优化的模糊神经网络,将... 为科学合理地预测大气污染物PM2.5颗粒物浓度变化规律,分析PM2.5颗粒物浓度变化历史数据,综合判断外部条件(温度、风速、天气状况)和内部条件(其它污染物的浓度)对PM2.5颗粒物浓度变化的影响。采用一种改进型PSO优化的模糊神经网络,将粒子群算法与模糊神经网络进行融合,发挥PSO算法全局寻优的特点,预测PM2.5颗粒物浓度的变化规律。对某市2013年PM2.5颗粒物浓度进行预测和验证,验证结果表明,该算法具备良好的预测精度。 展开更多
关键词 PM2.5浓度预测 改进PSO算法 模糊理论 神经网络 参数
在线阅读 下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部