针对液压弯辊控制系统的时变性、非线性和不确定性等特点,设计利用G A(遗传算法)优化的P I D神经网络(P I D N N)液压弯辊控制系统。P I D N N控制器不仅具有不依赖被控对象数学模型的优点,而且有很好的动态性能,结构简单易于设计。利用...针对液压弯辊控制系统的时变性、非线性和不确定性等特点,设计利用G A(遗传算法)优化的P I D神经网络(P I D N N)液压弯辊控制系统。P I D N N控制器不仅具有不依赖被控对象数学模型的优点,而且有很好的动态性能,结构简单易于设计。利用G A代替B P算法对P I D N N权值进行优化,克服了B P算法易陷于局部极小的不足。2种优化方法的仿真结果对比表明:G A-P I D N N控制器能够使液压弯辊力快速达到目标值,并且具有较强的抗干扰能力。展开更多
建立了交流稳压电源主电路数学模型并分析其闭环稳压控制原理。由于装置具有较强的非线性和变结构、变参数特性,采用经典PID控制器很难获得理想的控制效果。将人工神经网络与传统PID控制器相结合,构成一种不依赖于被控对象精确数学模型...建立了交流稳压电源主电路数学模型并分析其闭环稳压控制原理。由于装置具有较强的非线性和变结构、变参数特性,采用经典PID控制器很难获得理想的控制效果。将人工神经网络与传统PID控制器相结合,构成一种不依赖于被控对象精确数学模型的神经网络PID控制器。为了提高神经网络的收敛速度,采用Levenberg-Marquardt算法计算连接权值更新量,并对当前解施加一个以一定概率保留的随机扰动,加快迭代过程跳出局部极小点。对装置主电路和改进神经网络PID控制器进行仿真,结果表明:系统动态响应快,鲁棒性强,调节平滑,具有较好的控制效果。最后,制造并测试了额定电压660 V、容量400 k VA的实验样机,对理论研究进行了实验验证。展开更多
文摘针对液压弯辊控制系统的时变性、非线性和不确定性等特点,设计利用G A(遗传算法)优化的P I D神经网络(P I D N N)液压弯辊控制系统。P I D N N控制器不仅具有不依赖被控对象数学模型的优点,而且有很好的动态性能,结构简单易于设计。利用G A代替B P算法对P I D N N权值进行优化,克服了B P算法易陷于局部极小的不足。2种优化方法的仿真结果对比表明:G A-P I D N N控制器能够使液压弯辊力快速达到目标值,并且具有较强的抗干扰能力。
文摘建立了交流稳压电源主电路数学模型并分析其闭环稳压控制原理。由于装置具有较强的非线性和变结构、变参数特性,采用经典PID控制器很难获得理想的控制效果。将人工神经网络与传统PID控制器相结合,构成一种不依赖于被控对象精确数学模型的神经网络PID控制器。为了提高神经网络的收敛速度,采用Levenberg-Marquardt算法计算连接权值更新量,并对当前解施加一个以一定概率保留的随机扰动,加快迭代过程跳出局部极小点。对装置主电路和改进神经网络PID控制器进行仿真,结果表明:系统动态响应快,鲁棒性强,调节平滑,具有较好的控制效果。最后,制造并测试了额定电压660 V、容量400 k VA的实验样机,对理论研究进行了实验验证。