OBJECTIVE To investigate the pharmacological effect and mechanism of Sanguisorba officinalis L.(SOL)in non-small cell lung cancer(NSCLC)in vitro and in vivo based on network pharmacology.METHODS Network pharmacology w...OBJECTIVE To investigate the pharmacological effect and mechanism of Sanguisorba officinalis L.(SOL)in non-small cell lung cancer(NSCLC)in vitro and in vivo based on network pharmacology.METHODS Network pharmacology was used to analyze the improving effect of SOL on NSCLC and possible targets.Cell counting kit 8(CCK-8)and 5-ethynyl-2′-deoxyuridine(EdU)staining,Western blotting,flow cytometry of AnnexinⅤ/PI,Hoechst 33342/PI staining detection and immunofluorescence were utilized in vitro.H&E staining,immunohistochemistry staining and Western blotting were performed in vivo.RESULTS Based on network prediction,we analyzed the 208 common targets of SOL and NSCLC.36 core targets in 208 common targets were obtained through cytoscape analysis.And the top 10 core targets included Akt,mTOR,EGFR,etc..KEGG analysis showed that PI3K-Akt signaling pathway was the most likely pathway.Furthermore,the mechanism study found that SOL could activate the PI3K/Akt/mTOR signaling pathway in vitro and in vivo.The anti-proliferative effect of SOL in A549 and H1299 cells was measured and validated by CCK-8 and EdU assay.Immunohistochemical results of Ki67 showed that SOL effectively inhibited tumor growth in vivo.SOL also significantly inhibited the migration and invasion of A549 and H1299 cells.SOL significantly increased the percentage of cells with PI signal in A549 and H1299,and the process of cell death of A549 cells indicated that SOL induced apoptosis.The PARP-1 and caspase-3 in A549 and H1299 were found to be activated in a dose manner.The results in vivo were consistent with those in vitro.CONCLUSION SOL-induced,caspase-3-mediated apoptosis via the induction of the PI3K/Akt/mTOR signaling pathway in NSCLC,which further clarified the mechanism of SOL in the inhibition of NSCLC,and thereby provided a possibility for SOL to serve as a novel therapeutic agent for NSCLC in the future.展开更多
OBJECTIVE Hepatic fibrosis is a wound-healing response for injury.Activated hepatic stellate cells(HSCs)are the preferred targets of anti-hepatic fibrotic therapies.cucurbitacin E(CuE)is,one well-known natural compoun...OBJECTIVE Hepatic fibrosis is a wound-healing response for injury.Activated hepatic stellate cells(HSCs)are the preferred targets of anti-hepatic fibrotic therapies.cucurbitacin E(CuE)is,one well-known natural compound derived from traditional Chinese medicine,used in Asian countries for the prevention and treatment of hepatic disease.Therefore,the present study elucidated the mechanism of CuE on inducing apoptosis and attenuating hepatic fibrosis towards activated HSCs.METHODS The murine HSC(tHSC/Cl-6)cell line were incubated in 96-well plates and treated with TNF-αand CuE at various concentrations and indicated times.Cell viability was assessed with MTT assay.Another,t-HSC/Cl-6 were incubated in 6-well plates and also treated with TNF-α,CuE,AICAR or metformin for the indicated time and concentration.Cell protein and mRNA were prepared using kit and relevant signaling were detected by Western blotting and RT-PCR.RESULTS CuE inhibited cell proliferation of activated HSC/T-6cells in concentration-and time-dependent manner.CuE triggered the activation of caspase-3,cleaved the PARP,ration of bcl-2/bax,and cytochrom c protein in a time-and concentration-dependent manner.CuE decreased p-Erk/MAPK without effects on p-p38 and p-JNK.CuE inhibited the protein and mRNA expressions ofα-SMA,TIMP-1 and collagenⅠ in activated HSC-T6.CuE broadly blocked p-PI3 K,p-Akt,p-mTOR and p-p70S6 Kexpressions.CuE significantly increased phosphorylated AMPK expression as well as AICAR and metoformin.And metformin showed significantly higher activation of AMPK than AICAR.Ability of CuE on activation of AMPK was between AICAR and metformin.It′s also found that CuE significantly decreased p-mTOR as well as AICAR and metformin.CONCLUSION CuE could modulate HSC survival and activation as a potential anti-fibrotic agent for liver fibrosis treatment.The findings demonstrate that CuE induced HSC apoptosis via ERK/MAPK and PI3K/Akt-AMPK-mTOR signaling.展开更多
基金National Natural Science Foundation of China(81774013,81804221,82074129)and National Science and Technology Major Project of China(2018ZX09721004-006-004)。
文摘OBJECTIVE To investigate the pharmacological effect and mechanism of Sanguisorba officinalis L.(SOL)in non-small cell lung cancer(NSCLC)in vitro and in vivo based on network pharmacology.METHODS Network pharmacology was used to analyze the improving effect of SOL on NSCLC and possible targets.Cell counting kit 8(CCK-8)and 5-ethynyl-2′-deoxyuridine(EdU)staining,Western blotting,flow cytometry of AnnexinⅤ/PI,Hoechst 33342/PI staining detection and immunofluorescence were utilized in vitro.H&E staining,immunohistochemistry staining and Western blotting were performed in vivo.RESULTS Based on network prediction,we analyzed the 208 common targets of SOL and NSCLC.36 core targets in 208 common targets were obtained through cytoscape analysis.And the top 10 core targets included Akt,mTOR,EGFR,etc..KEGG analysis showed that PI3K-Akt signaling pathway was the most likely pathway.Furthermore,the mechanism study found that SOL could activate the PI3K/Akt/mTOR signaling pathway in vitro and in vivo.The anti-proliferative effect of SOL in A549 and H1299 cells was measured and validated by CCK-8 and EdU assay.Immunohistochemical results of Ki67 showed that SOL effectively inhibited tumor growth in vivo.SOL also significantly inhibited the migration and invasion of A549 and H1299 cells.SOL significantly increased the percentage of cells with PI signal in A549 and H1299,and the process of cell death of A549 cells indicated that SOL induced apoptosis.The PARP-1 and caspase-3 in A549 and H1299 were found to be activated in a dose manner.The results in vivo were consistent with those in vitro.CONCLUSION SOL-induced,caspase-3-mediated apoptosis via the induction of the PI3K/Akt/mTOR signaling pathway in NSCLC,which further clarified the mechanism of SOL in the inhibition of NSCLC,and thereby provided a possibility for SOL to serve as a novel therapeutic agent for NSCLC in the future.
基金The project supported by National Natural Science Foundation of China(81260497,81460564)Science and Technology Department of Jilin Province Youth Scientific Research Fund Project(201201075)
文摘OBJECTIVE Hepatic fibrosis is a wound-healing response for injury.Activated hepatic stellate cells(HSCs)are the preferred targets of anti-hepatic fibrotic therapies.cucurbitacin E(CuE)is,one well-known natural compound derived from traditional Chinese medicine,used in Asian countries for the prevention and treatment of hepatic disease.Therefore,the present study elucidated the mechanism of CuE on inducing apoptosis and attenuating hepatic fibrosis towards activated HSCs.METHODS The murine HSC(tHSC/Cl-6)cell line were incubated in 96-well plates and treated with TNF-αand CuE at various concentrations and indicated times.Cell viability was assessed with MTT assay.Another,t-HSC/Cl-6 were incubated in 6-well plates and also treated with TNF-α,CuE,AICAR or metformin for the indicated time and concentration.Cell protein and mRNA were prepared using kit and relevant signaling were detected by Western blotting and RT-PCR.RESULTS CuE inhibited cell proliferation of activated HSC/T-6cells in concentration-and time-dependent manner.CuE triggered the activation of caspase-3,cleaved the PARP,ration of bcl-2/bax,and cytochrom c protein in a time-and concentration-dependent manner.CuE decreased p-Erk/MAPK without effects on p-p38 and p-JNK.CuE inhibited the protein and mRNA expressions ofα-SMA,TIMP-1 and collagenⅠ in activated HSC-T6.CuE broadly blocked p-PI3 K,p-Akt,p-mTOR and p-p70S6 Kexpressions.CuE significantly increased phosphorylated AMPK expression as well as AICAR and metoformin.And metformin showed significantly higher activation of AMPK than AICAR.Ability of CuE on activation of AMPK was between AICAR and metformin.It′s also found that CuE significantly decreased p-mTOR as well as AICAR and metformin.CONCLUSION CuE could modulate HSC survival and activation as a potential anti-fibrotic agent for liver fibrosis treatment.The findings demonstrate that CuE induced HSC apoptosis via ERK/MAPK and PI3K/Akt-AMPK-mTOR signaling.