Molecular-frame photoelectron momentum distributions(MF-PMDs) of an H_(2)^(+) molecule ion in the presence of a pair of counter-rotating circularly polarized attosecond extreme ultraviolet laser pulses is studied by n...Molecular-frame photoelectron momentum distributions(MF-PMDs) of an H_(2)^(+) molecule ion in the presence of a pair of counter-rotating circularly polarized attosecond extreme ultraviolet laser pulses is studied by numerically solving the two-dimensional time-dependent Schrodinger equation within the frozen-nuclei approximation. At small time delay, our simulations show that the electron vortex structure is sensitive to the time delay and relative phase between the counterrotating pulses when they are partially overlapped. By adjusting time delay and relative phase, we have the ability to manipulate the MF-PMDs and the appearance of spiral arms. We further show that the internuclear distance can affect the spiral vortices due to its different transition cross sections in the parallel and perpendicular geometries. The lowest-order perturbation theory is employed to interpret these phenomena qualitatively. It is concluded that the internuclear distancedependent transition cross sections and the confinement effect in diatomic molecules are responsible for the variation of vortex structures in the MF-PMDs.展开更多
Molecular-frame photoelectron momentum distributions(MF-PMDs)have been studied for imaging molecular structures.We investigate the MF-PMDs of CO_(2)molecules exposed to circularly polarized(CP)attosecond laser pulses ...Molecular-frame photoelectron momentum distributions(MF-PMDs)have been studied for imaging molecular structures.We investigate the MF-PMDs of CO_(2)molecules exposed to circularly polarized(CP)attosecond laser pulses bysolving the time-dependent Schrodinger equations based on the single-active-electron approximation frames.Results showthat high-frequency photons lead to photoelectron diffraction patterns,indicating molecular orbitals.These diffractionpatterns can be illustrated by the ultrafast photoionization models.However,for the driving pulses with 30 nm,a deviationbetween MF-PMDs and theoretically predicted results of the ultrafast photoionization models is produced because theCoulomb effect strongly influences the molecular photoionization.Meanwhile,the MF-PMDs rotate in the same directionas the helicity of driving laser pulses.Our results also demonstrate that the MF-PMDs in a CP laser pulse are the superpositionof those in the parallel and perpendicular linearly polarized cases.The simulations efficiently visualize molecularorbital geometries and structures by ultrafast photoelectron imaging.Furthermore,we determine the contribution of HOMOand HOMO-1 orbitals to ionization by varying the relative phase and the ratio of these two orbitals.展开更多
By developing a full quantum scattering theory of high-order above-threshold ionization,we study the energy spectra and the angular distributions of photoelectrons from atoms with intense laser fields shining on them....By developing a full quantum scattering theory of high-order above-threshold ionization,we study the energy spectra and the angular distributions of photoelectrons from atoms with intense laser fields shining on them.We find that real rescattering can occur many times,and even infinite times.The photoelectrons from the rescattering process form a broad plateau in the kinetic-energy spectrum.We further disclose a multiple-plateau structure formed by the high-energy photoelectrons,which absorb many photons during the rescattering process.Moreover,we find that both the angular distributions and the kinetic-energy spectra of photoelectrons obey the same scaling law as that for directly emitted photoelectrons.展开更多
We investigate Autler-Townes splitting in the photoelectron spectra of K2 molecule driven by pump-probe pulses via employing the time-dependent wave packet approach. It is found that the magnitude of Aulter-Townes spl...We investigate Autler-Townes splitting in the photoelectron spectra of K2 molecule driven by pump-probe pulses via employing the time-dependent wave packet approach. It is found that the magnitude of Aulter-Townes splitting varies with the wavelength of the intense laser pulse. In particular, the phenomenon of Aulter-Townes splitting vanishes for the far-off resonance of the pump pulse. Also, the split peaks of Autler Townes in the case of resonant pump pulse give us an approach to directly obtaining the transition dipole moment of a molecule.展开更多
We present an approach,a Terahertz streaking-assisted photoelectron spectrum(THz SAPS),to achieve direct observations of ultrafast coherence dynamics with timescales beyond the pulse duration.Using a 24 fs probe pulse...We present an approach,a Terahertz streaking-assisted photoelectron spectrum(THz SAPS),to achieve direct observations of ultrafast coherence dynamics with timescales beyond the pulse duration.Using a 24 fs probe pulse,the THz SAPS enables us to well visualize Rabi oscillations of 11.76 fs and quantum beats of 2.62 fs between the 5S_(1/2) and 5P_(3/2) in rubidium atoms.The numerical results show that the THz SAPS can simultaneously achieve high resolution in both frequency and time domains without the limitation of Heisenberg uncertainty of the probe pulse.The long probe pulse promises sufficiently high frequency resolution in photoelectron spectroscopy allowing to observe Autler-Townes splittings,whereas the streaking THz field enhances temporal resolution for not only Rabi oscillations but also quantum beats between the ground and excited states.The THz SAPS demonstrates a potential applicability for observation and manipulation of ultrafast coherence processes in frequency and time domains.展开更多
Silicon nanopillars are fabricated by inductively coupled plasma (ICP) dry etching with the cesium chloride (CsCl) islands as masks originally from self-assembly. Wafers with nanopillar texture or planar surface a...Silicon nanopillars are fabricated by inductively coupled plasma (ICP) dry etching with the cesium chloride (CsCl) islands as masks originally from self-assembly. Wafers with nanopillar texture or planar surface are subjected to phosphorus (P) diffusion by liquid dopant source (POCl3) at 870 ℃ to form P-N junctions with a depth of 300 nm. The X-ray photoelectron spectroscopy (XPS) is used to measure the Si 2p core levels of P-N junction wafer with nanopillar texture and planar surface. With a visible light excitation, the P-N junction produces a new electric potential for photoelectric characteristic, which causes the Si 2p core level to have a energy shift compared with the spectrum without the visible light. The energy shift of the Si 2p core level is -0.27 eV for the planar P-N junction and -0.18 eV for the nanopillar one. The difference in Si 2p energy shift is due to more space lattice defects and chemical bond breaks for nanopillar compared with the planar one.展开更多
Wave packet dynamics of the Li2 molecule are investigated by using the time-dependent quantum wave packet method, and the time-resolved photoelectron spectra of the Li2 molecule are calculated. The time-resolved wave ...Wave packet dynamics of the Li2 molecule are investigated by using the time-dependent quantum wave packet method, and the time-resolved photoelectron spectra of the Li2 molecule are calculated. The time-resolved wave packet theory is used to reasonably interpret the phenomena of the photoelectron spectra for different parameters. Our calculation shows that the loss of the wave packets in the shelf state area of E1∑g+ plays a prominent role in the process of photoionization with the increase of the delay time. Moreover, the oscillation of the wave packet on the E1∑g+ curve symbolizes a decreasing process of energy.展开更多
Anion ion photoelectron spectroscopy and density functional theory (DFT) are used to investigate the electronic and structural properties of ScSin (n = 2 - 6) clusters and their neutrals. We find that the structur...Anion ion photoelectron spectroscopy and density functional theory (DFT) are used to investigate the electronic and structural properties of ScSin (n = 2 - 6) clusters and their neutrals. We find that the structures of ScSin^- are similar to those of Sin+1^-. The most stable isomers of ScSin^- cluster anions and their neutrals are similar for n=-2, 3 and 5 but different for n=4 and 6, indicating that the charge effect on geometry is size dependent for small scandiumsilicon clusters. The low electron binding energy (EBE) tails observed in the spectra of ScSi4,6^- can be explained by the existence of less stable isomers. A comparison between ScSin and VSin clusters shows the effects of metal size and electron configuration on cluster geometries.展开更多
This paper reports how pyrite films were prepared by thermal sulfurization of magnetron sputtered iron films and characterized by X-ray absorption near edge structure spectra and X-ray photoelectron spectroscopy on a ...This paper reports how pyrite films were prepared by thermal sulfurization of magnetron sputtered iron films and characterized by X-ray absorption near edge structure spectra and X-ray photoelectron spectroscopy on a 4B9B beam line at the Beijing Synchrotron Radiation Facility. The band gap of the pyrite agrees well with the optical band gap obtained by a spectrophotometer. The octahedral symmetry of pyrite leads to the splitting of the d orbit into t2g and eg levels. The high spin and low spin states were analysed through the difference of electron exchange interaction and the orbital crystal field. Only when the crystal field splitting is higher than 1.5 eV, the two weak peaks above the white lines can appear, and this was approved by experiments in the present work.展开更多
We theoretically investigate the Autler–Townes(AT) splitting in the photoelectron spectrum of four-level ladder K2 molecule driven by a pump 1-pump 2-probe pulse via employing the time-dependent wave packet approac...We theoretically investigate the Autler–Townes(AT) splitting in the photoelectron spectrum of four-level ladder K2 molecule driven by a pump 1-pump 2-probe pulse via employing the time-dependent wave packet approach. The effects of the pump-1 laser intensity and wavelength on AT splitting are studied for the first time. The magnitude of AT splitting increases with increasing the pump-1 laser intensity. The triple splitting with asymmetric profile occurs due to the nonresonant excitation. The triple structure is transformed into a double structure(near-resonant region), and then becomes a peak(far-off resonant region) progressively as the pump-1 laser is detuned from the resonance wavelength, which can be explained in terms of the asymmetric excitation/population of dressed states. The splitting between adjacent peaks and the splitting between the two sideband peaks in the triplet do not change with the pump-1 pulse wavelength. The three peaks shift toward lower energy with the same shift 1/4^*△1 as the pump-1 wavelength changes in near-resonant region.The asymptotic behaviors of AT splitting with the pump-1 laser intensity are interesting in the threshold points of the near-resonant region and the far-off resonant region.展开更多
We report our numerical simulation on the dynamic interference photoelectron spectra for a one-dimensional (1D) He model exposed to intense ultrashort extreme ultraviolet (XUV) laser pulses. The results demonstrat...We report our numerical simulation on the dynamic interference photoelectron spectra for a one-dimensional (1D) He model exposed to intense ultrashort extreme ultraviolet (XUV) laser pulses. The results demonstrate an unambiguous interference feature in the photoelectron spectra, and the interference is unveiled to originate from the dynamic Stark effect. The interference photoelectron spectra are prompted for intense sub-femtosecond XUV laser pulses in double ionization. The stationary phase picture is corroborated qualitatively in the two-electron system. The ability of probing the dynamic Stark effect by the photoelectron spectra in a pragmatic experiment of single-photon double ionization of He may shed light on further investigation on multi-electron atoms and molecules.展开更多
Semiconductor colloidal nanocrystals(NCs)have size-and shape-dependent optoelectronic properties due to the quantum confinement effect,and are considered to be promising optoelectronic materials.Among them,Ⅱ-Ⅵ(CdSe,...Semiconductor colloidal nanocrystals(NCs)have size-and shape-dependent optoelectronic properties due to the quantum confinement effect,and are considered to be promising optoelectronic materials.Among them,Ⅱ-Ⅵ(CdSe,CdS,CdTe,etc.)andⅣ-Ⅵ(PbSe,PbTe,PbS,etc.)have been widely studied as representative colloidal NCs.However,the surfactant used in its synthesis progress results in the NCs surface covered by an insulating shell,which greatly affects the exciton separation and carrier transport of colloidal NCs-based photovoltaic devices.Therefore,how to design high-efficiency optoelectronic devices by improving the transport performance of carriers has been a great challenge.The key issues in the research ofⅡ-Ⅵ(CdSe,CdS,CdTe,etc.)andⅣ-Ⅵ(PbSe,PbTe,PbS,etc.)colloidal NCs were summarized,including synthesis strategy,morphology/size adjustment,surface ligand design,improvement of conductivity and their optoelectronic properties.The influence of surface ligands on the stability and dispersion of NCs was firstly introduced,and then strategies of improving electrical conductivity of NCs were discussed,such as ligands exchange,doping,self-assembly and plasmons,which provided a good foundation for the subsequent preparation of optoelectronic devices.The future development direction of NCs optoelectronic devices is expounded from the aspects of materials composition,comprehensive preparation and flexible processing of colloidal NCs.展开更多
In this work, we mainly investigate the NH3 molecular multiphoton ionization process by using the photoelectron velocity map imaging technique. Under the condition of femtosecond laser(wavelength at 800 nm), the photo...In this work, we mainly investigate the NH3 molecular multiphoton ionization process by using the photoelectron velocity map imaging technique. Under the condition of femtosecond laser(wavelength at 800 nm), the photoelectron images are detected. The channel switching and above-threshold ionization(ATI) effect are also confirmed. The kinetic energy spectrum(KES) and the photoelectron angular distributions(PADs) are obtained through the anti-Abel transformation from the original images, and then three ionization channels are confirmed successfully according to the Freeman resonance effect in a relatively low laser intensity region. In the excitation process, the intermediate resonance Rydberg states are C^1 A 1(6 + 2 photons process), B^1 E(6 + 2 photons process) and C^1 A 1(7 + 2 photons process), respectively. At the same time, we also find that the photoelectron angular distributions are independent of laser intensity. In addition, the electrons produced by different processes interfere with each other and they can produce a spider-like structure. We also find ac-Stark movement according to the Stark-shift-induced resonance effect when the laser intensity is relatively high.展开更多
With the increasing interest in Cu2O-based devices for photovoltaic applications,the energy band alignment at the Cu2O/ZnO heterojunction has received more and more attention.In this work,a high-quality Cu2O/ZnO heter...With the increasing interest in Cu2O-based devices for photovoltaic applications,the energy band alignment at the Cu2O/ZnO heterojunction has received more and more attention.In this work,a high-quality Cu2O/ZnO heterojunction is fabricated on a c-Al2 O3 substrate by laser-molecular beam epitaxy,and the energy band alignment is determined by x-ray photoelectron spectroscopy.The valence band of ZnO is found to be 1.97 eV below that of Cu2O.A type-II band alignment exists at the Cu2O/ZnO heterojunction with a resulting conduction band offset of 0.77 eV,which is especially favorable for enhancing the efficiency of Cu2O/ZnO solar cells.展开更多
In recent years, the formate ion (HCO2^-) as a kind of hole-to-electron converter has attracted much attention of photographic researchers. The formate ions can trap photo-generated holes, eliminate or reduce the el...In recent years, the formate ion (HCO2^-) as a kind of hole-to-electron converter has attracted much attention of photographic researchers. The formate ions can trap photo-generated holes, eliminate or reduce the electron loss caused by electron-hole recombination in latent image formation process. Through the hole-to-electron conversion, it can also release an extra electron or electron carrier, improving photosensitivity. In this paper the microwave absorption and dielectric spectrum detection technique is used to detect the time evolution behaviour of free photoelectrons generated by 35ps laser pulses in cubic AgCl emulsions doped with formate ions. The influence of different doping conditions of formate ions on the photoelectron decay kinetics of AgC1 is analysed. It is found that when the HCO2^- content is 10^-3mol/mol Ag and the doping position is 90% the electron decay time and lifetime reach their maxima due to the efficient trap of holes by formate ions.展开更多
The most important interface-related quantities determined by band alignment are the barrier heights for charge trans- port, given by the Fermi level position at the interface. Taking Pb(Zr, Ti)O3 (PZT) as a typic...The most important interface-related quantities determined by band alignment are the barrier heights for charge trans- port, given by the Fermi level position at the interface. Taking Pb(Zr, Ti)O3 (PZT) as a typical ferroelectric material and applying X-ray photoelectron spectroscopy (XPS), we briefly review the interface formation and barrier heights at the inter- faces between PZT and electrodes made of various metals or conductive oxides. Polarization dependence of the Schottky barrier height at a ferroelectric/electrode interface is also directly observed using XPS.展开更多
This paper proposes a modified strong field approximation model for evaluating nondipole effects on the ionization of an atom in an intense laser field. The photoelectron longitudinal momentum distributions (PLMD) o...This paper proposes a modified strong field approximation model for evaluating nondipole effects on the ionization of an atom in an intense laser field. The photoelectron longitudinal momentum distributions (PLMD) of a hydrogen-like atom exposed to a mid-infrared laser field is calculated. The theoretical results indicate an obvious asymmetry in the PLMD, and an offset of the PLMD peak appears in the opposite direction of the beam propagation due to nondipole effects. The peak offsets of the PLMD increased with the laser intensity, imposed by the initial state of the hydrogen-like atom.展开更多
This paper calculates quantum-mechanically the photoelectron energy spectra excited by attosecond x-rays in the presence of a few-cycle laser. A photoelectron laser phase determination method is used for precise measu...This paper calculates quantum-mechanically the photoelectron energy spectra excited by attosecond x-rays in the presence of a few-cycle laser. A photoelectron laser phase determination method is used for precise measurements of the pulse natural properties of x-ray intensity and the instantaneous frequency profiles. As a direct procedure without any previous pulse profile assumptions and time-resolved measurements as well as data fitting analysis, this method can be used to improve the time resolutions of attosecond timing and measurements with metrological precision. The measurement range is half of a laser optical cycle.展开更多
We theoretically investigate the strong-field ionization of H+2 molecules in four different electronic states by calculating photoelectron angular distributions in circularly polarized fields. We find that the struct...We theoretically investigate the strong-field ionization of H+2 molecules in four different electronic states by calculating photoelectron angular distributions in circularly polarized fields. We find that the structure of photoelectron angular distribution depends on the molecular orbital as well as the energy of the photoelectron. The location of main lobes changes with the symmetric property of the molecular orbital. Generally, for molecules with bonding electronic states, the photoelectron’s angular distribution shows a rotation of π/2 with respect to the molecular axis, while for molecules with antibonding electronic states, no rotation occurs. We use an interference scenario to interpret these phenomena. We also find that, due to the interference effect, a new pair of jets appears in the waist of the main lobes, and the main lobes or jets of the photoelectron’s angular distribution are split into two parts if the photoelectron energy is sufficiently high.展开更多
The photoelectron angular distributions (PADs) of hydrogen atoms in an intense laser field of linear polarization are studied using the S-matrix theory in the length gauge. The PADs show main lobes along the laser p...The photoelectron angular distributions (PADs) of hydrogen atoms in an intense laser field of linear polarization are studied using the S-matrix theory in the length gauge. The PADs show main lobes along the laser polarization and jet-like structures sticking from the waist of main lobes. Our previous prediction, based on a nonperturbative scattering theory of photoionization developed by Guo et al, showing that the number of jets on one side of PADs may increase by one, three, or other odd numbers and may decrease by one when one more photon is absorbed, is confirmed by this treatment. Within the strong-field approximation, good agreement is obtained between these two quite different treatments. We further study the influence of the Coulomb attraction to PADs, by taking a Coulomb-Volkov state as the continuum state of photoelectrons. We find that under the influence of the Coulomb attraction, the PADs change greatly but the predicted phenomena still appear. This study verifies that the jet-like structures have no relation with the angular momentum of photoelectrons.展开更多
基金Project supported by the Natural Science Foundation of Jilin Province,China (Grant No.20220101016JC)the National Key Research and Development Program of China (Grant No.2022YFE0134200)+1 种基金the National Natural Science Foundation of China (Grant Nos.12174147,91850114,and 11774131)the Open Research Fund of State Key Laboratory of Transient Optics and Photonics。
文摘Molecular-frame photoelectron momentum distributions(MF-PMDs) of an H_(2)^(+) molecule ion in the presence of a pair of counter-rotating circularly polarized attosecond extreme ultraviolet laser pulses is studied by numerically solving the two-dimensional time-dependent Schrodinger equation within the frozen-nuclei approximation. At small time delay, our simulations show that the electron vortex structure is sensitive to the time delay and relative phase between the counterrotating pulses when they are partially overlapped. By adjusting time delay and relative phase, we have the ability to manipulate the MF-PMDs and the appearance of spiral arms. We further show that the internuclear distance can affect the spiral vortices due to its different transition cross sections in the parallel and perpendicular geometries. The lowest-order perturbation theory is employed to interpret these phenomena qualitatively. It is concluded that the internuclear distancedependent transition cross sections and the confinement effect in diatomic molecules are responsible for the variation of vortex structures in the MF-PMDs.
基金supported by the National Natural Science Foundation of China(Grant Nos.11974007,12074146,12074142,61575077,12374265,11947243,91850114,and 11774131)the Natural Science Foundation of Jilin Province of China(Grant No.20220101016JC).
文摘Molecular-frame photoelectron momentum distributions(MF-PMDs)have been studied for imaging molecular structures.We investigate the MF-PMDs of CO_(2)molecules exposed to circularly polarized(CP)attosecond laser pulses bysolving the time-dependent Schrodinger equations based on the single-active-electron approximation frames.Results showthat high-frequency photons lead to photoelectron diffraction patterns,indicating molecular orbitals.These diffractionpatterns can be illustrated by the ultrafast photoionization models.However,for the driving pulses with 30 nm,a deviationbetween MF-PMDs and theoretically predicted results of the ultrafast photoionization models is produced because theCoulomb effect strongly influences the molecular photoionization.Meanwhile,the MF-PMDs rotate in the same directionas the helicity of driving laser pulses.Our results also demonstrate that the MF-PMDs in a CP laser pulse are the superpositionof those in the parallel and perpendicular linearly polarized cases.The simulations efficiently visualize molecularorbital geometries and structures by ultrafast photoelectron imaging.Furthermore,we determine the contribution of HOMOand HOMO-1 orbitals to ionization by varying the relative phase and the ratio of these two orbitals.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10774513,61078080,11174304,and 11104167)the National Basic Research Program of China (Grant Nos. 2010CB923203 and 2011CB808103)
文摘By developing a full quantum scattering theory of high-order above-threshold ionization,we study the energy spectra and the angular distributions of photoelectrons from atoms with intense laser fields shining on them.We find that real rescattering can occur many times,and even infinite times.The photoelectrons from the rescattering process form a broad plateau in the kinetic-energy spectrum.We further disclose a multiple-plateau structure formed by the high-energy photoelectrons,which absorb many photons during the rescattering process.Moreover,we find that both the angular distributions and the kinetic-energy spectra of photoelectrons obey the same scaling law as that for directly emitted photoelectrons.
基金supported by the National Natural Science Foundation of China (Grant Nos.91021009 and 10874102)the Research Fund for the Doctoral Program of Higher Education,China (Grant No.200804220004)
文摘We investigate Autler-Townes splitting in the photoelectron spectra of K2 molecule driven by pump-probe pulses via employing the time-dependent wave packet approach. It is found that the magnitude of Aulter-Townes splitting varies with the wavelength of the intense laser pulse. In particular, the phenomenon of Aulter-Townes splitting vanishes for the far-off resonance of the pump pulse. Also, the split peaks of Autler Townes in the case of resonant pump pulse give us an approach to directly obtaining the transition dipole moment of a molecule.
基金Supported by the National Natural Science Foundation of China(Grant Nos.11827806,11874368 and 61675213).
文摘We present an approach,a Terahertz streaking-assisted photoelectron spectrum(THz SAPS),to achieve direct observations of ultrafast coherence dynamics with timescales beyond the pulse duration.Using a 24 fs probe pulse,the THz SAPS enables us to well visualize Rabi oscillations of 11.76 fs and quantum beats of 2.62 fs between the 5S_(1/2) and 5P_(3/2) in rubidium atoms.The numerical results show that the THz SAPS can simultaneously achieve high resolution in both frequency and time domains without the limitation of Heisenberg uncertainty of the probe pulse.The long probe pulse promises sufficiently high frequency resolution in photoelectron spectroscopy allowing to observe Autler-Townes splittings,whereas the streaking THz field enhances temporal resolution for not only Rabi oscillations but also quantum beats between the ground and excited states.The THz SAPS demonstrates a potential applicability for observation and manipulation of ultrafast coherence processes in frequency and time domains.
基金supported by the National Natural Science Foundation of China(Grant No.50972144)
文摘Silicon nanopillars are fabricated by inductively coupled plasma (ICP) dry etching with the cesium chloride (CsCl) islands as masks originally from self-assembly. Wafers with nanopillar texture or planar surface are subjected to phosphorus (P) diffusion by liquid dopant source (POCl3) at 870 ℃ to form P-N junctions with a depth of 300 nm. The X-ray photoelectron spectroscopy (XPS) is used to measure the Si 2p core levels of P-N junction wafer with nanopillar texture and planar surface. With a visible light excitation, the P-N junction produces a new electric potential for photoelectric characteristic, which causes the Si 2p core level to have a energy shift compared with the spectrum without the visible light. The energy shift of the Si 2p core level is -0.27 eV for the planar P-N junction and -0.18 eV for the nanopillar one. The difference in Si 2p energy shift is due to more space lattice defects and chemical bond breaks for nanopillar compared with the planar one.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60977063 and 10574039)the Foundation for Key Program of Ministry of Education China (Grant No. 206084)+1 种基金the Innovation Scientists and Technicians Troop Construction Projects of Henan Province,China (Grant No. 084100510011)the Innovation Talents of Institution of Higher Education of Henan Province,China (Grant No. 2006KYCX002)
文摘Wave packet dynamics of the Li2 molecule are investigated by using the time-dependent quantum wave packet method, and the time-resolved photoelectron spectra of the Li2 molecule are calculated. The time-resolved wave packet theory is used to reasonably interpret the phenomena of the photoelectron spectra for different parameters. Our calculation shows that the loss of the wave packets in the shelf state area of E1∑g+ plays a prominent role in the process of photoionization with the increase of the delay time. Moreover, the oscillation of the wave packet on the E1∑g+ curve symbolizes a decreasing process of energy.
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KJCX2-EW-01)the National Natural Science Foundation of China (Grant Nos. 20853001 and 10874007)
文摘Anion ion photoelectron spectroscopy and density functional theory (DFT) are used to investigate the electronic and structural properties of ScSin (n = 2 - 6) clusters and their neutrals. We find that the structures of ScSin^- are similar to those of Sin+1^-. The most stable isomers of ScSin^- cluster anions and their neutrals are similar for n=-2, 3 and 5 but different for n=4 and 6, indicating that the charge effect on geometry is size dependent for small scandiumsilicon clusters. The low electron binding energy (EBE) tails observed in the spectra of ScSi4,6^- can be explained by the existence of less stable isomers. A comparison between ScSin and VSin clusters shows the effects of metal size and electron configuration on cluster geometries.
基金Project supported by the National Natural Science Foundation of China (Grant No 102750770)
文摘This paper reports how pyrite films were prepared by thermal sulfurization of magnetron sputtered iron films and characterized by X-ray absorption near edge structure spectra and X-ray photoelectron spectroscopy on a 4B9B beam line at the Beijing Synchrotron Radiation Facility. The band gap of the pyrite agrees well with the optical band gap obtained by a spectrophotometer. The octahedral symmetry of pyrite leads to the splitting of the d orbit into t2g and eg levels. The high spin and low spin states were analysed through the difference of electron exchange interaction and the orbital crystal field. Only when the crystal field splitting is higher than 1.5 eV, the two weak peaks above the white lines can appear, and this was approved by experiments in the present work.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.41104094 and 11174119)the Research Fund for the Doctoral Program of Higher Education of China(Grant No.20114324120002)+1 种基金the Research Foundation of Education Bureau of Hunan Province,China(Grant No.12C0370)the Scientific Research Foundation for the Returned Overseas Chinese Scholars
文摘We theoretically investigate the Autler–Townes(AT) splitting in the photoelectron spectrum of four-level ladder K2 molecule driven by a pump 1-pump 2-probe pulse via employing the time-dependent wave packet approach. The effects of the pump-1 laser intensity and wavelength on AT splitting are studied for the first time. The magnitude of AT splitting increases with increasing the pump-1 laser intensity. The triple splitting with asymmetric profile occurs due to the nonresonant excitation. The triple structure is transformed into a double structure(near-resonant region), and then becomes a peak(far-off resonant region) progressively as the pump-1 laser is detuned from the resonance wavelength, which can be explained in terms of the asymmetric excitation/population of dressed states. The splitting between adjacent peaks and the splitting between the two sideband peaks in the triplet do not change with the pump-1 pulse wavelength. The three peaks shift toward lower energy with the same shift 1/4^*△1 as the pump-1 wavelength changes in near-resonant region.The asymptotic behaviors of AT splitting with the pump-1 laser intensity are interesting in the threshold points of the near-resonant region and the far-off resonant region.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61178028,11674243 and 11674242the National Basic Research Program of China under Grant No 2015CB755403
文摘We report our numerical simulation on the dynamic interference photoelectron spectra for a one-dimensional (1D) He model exposed to intense ultrashort extreme ultraviolet (XUV) laser pulses. The results demonstrate an unambiguous interference feature in the photoelectron spectra, and the interference is unveiled to originate from the dynamic Stark effect. The interference photoelectron spectra are prompted for intense sub-femtosecond XUV laser pulses in double ionization. The stationary phase picture is corroborated qualitatively in the two-electron system. The ability of probing the dynamic Stark effect by the photoelectron spectra in a pragmatic experiment of single-photon double ionization of He may shed light on further investigation on multi-electron atoms and molecules.
基金supported by the National Natural Science Foundation of China(No.51976081)。
文摘Semiconductor colloidal nanocrystals(NCs)have size-and shape-dependent optoelectronic properties due to the quantum confinement effect,and are considered to be promising optoelectronic materials.Among them,Ⅱ-Ⅵ(CdSe,CdS,CdTe,etc.)andⅣ-Ⅵ(PbSe,PbTe,PbS,etc.)have been widely studied as representative colloidal NCs.However,the surfactant used in its synthesis progress results in the NCs surface covered by an insulating shell,which greatly affects the exciton separation and carrier transport of colloidal NCs-based photovoltaic devices.Therefore,how to design high-efficiency optoelectronic devices by improving the transport performance of carriers has been a great challenge.The key issues in the research ofⅡ-Ⅵ(CdSe,CdS,CdTe,etc.)andⅣ-Ⅵ(PbSe,PbTe,PbS,etc.)colloidal NCs were summarized,including synthesis strategy,morphology/size adjustment,surface ligand design,improvement of conductivity and their optoelectronic properties.The influence of surface ligands on the stability and dispersion of NCs was firstly introduced,and then strategies of improving electrical conductivity of NCs were discussed,such as ligands exchange,doping,self-assembly and plasmons,which provided a good foundation for the subsequent preparation of optoelectronic devices.The future development direction of NCs optoelectronic devices is expounded from the aspects of materials composition,comprehensive preparation and flexible processing of colloidal NCs.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11574116,11534004,10704028,and 11474123)
文摘In this work, we mainly investigate the NH3 molecular multiphoton ionization process by using the photoelectron velocity map imaging technique. Under the condition of femtosecond laser(wavelength at 800 nm), the photoelectron images are detected. The channel switching and above-threshold ionization(ATI) effect are also confirmed. The kinetic energy spectrum(KES) and the photoelectron angular distributions(PADs) are obtained through the anti-Abel transformation from the original images, and then three ionization channels are confirmed successfully according to the Freeman resonance effect in a relatively low laser intensity region. In the excitation process, the intermediate resonance Rydberg states are C^1 A 1(6 + 2 photons process), B^1 E(6 + 2 photons process) and C^1 A 1(7 + 2 photons process), respectively. At the same time, we also find that the photoelectron angular distributions are independent of laser intensity. In addition, the electrons produced by different processes interfere with each other and they can produce a spider-like structure. We also find ac-Stark movement according to the Stark-shift-induced resonance effect when the laser intensity is relatively high.
基金Project supported by the National Natural Science Foundation of China(Grant No.11404302)the Laser Fusion Research Center Funds for Young Talents,China(Grant No.RCFPD1-2017-9)
文摘With the increasing interest in Cu2O-based devices for photovoltaic applications,the energy band alignment at the Cu2O/ZnO heterojunction has received more and more attention.In this work,a high-quality Cu2O/ZnO heterojunction is fabricated on a c-Al2 O3 substrate by laser-molecular beam epitaxy,and the energy band alignment is determined by x-ray photoelectron spectroscopy.The valence band of ZnO is found to be 1.97 eV below that of Cu2O.A type-II band alignment exists at the Cu2O/ZnO heterojunction with a resulting conduction band offset of 0.77 eV,which is especially favorable for enhancing the efficiency of Cu2O/ZnO solar cells.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10354001, 60478033, and 10274017), the Natural Science Foundation of Hebei Province of China (Grant No 603138) and the Doctorate Foundation of Hebei Province of China (Grant No B2003119).
文摘In recent years, the formate ion (HCO2^-) as a kind of hole-to-electron converter has attracted much attention of photographic researchers. The formate ions can trap photo-generated holes, eliminate or reduce the electron loss caused by electron-hole recombination in latent image formation process. Through the hole-to-electron conversion, it can also release an extra electron or electron carrier, improving photosensitivity. In this paper the microwave absorption and dielectric spectrum detection technique is used to detect the time evolution behaviour of free photoelectrons generated by 35ps laser pulses in cubic AgCl emulsions doped with formate ions. The influence of different doping conditions of formate ions on the photoelectron decay kinetics of AgC1 is analysed. It is found that when the HCO2^- content is 10^-3mol/mol Ag and the doping position is 90% the electron decay time and lifetime reach their maxima due to the efficient trap of holes by formate ions.
基金Project supported by the German Science Foundation(DFG)within the Collaborative Research Center SFB 595(Electrical Fatigue of Functional Materials)the National Natural Science Foundation of China(Grant Nos.11274287,11174001,and 11204313)the National Basic Research Program of China(Grant No.2012CB927402)
文摘The most important interface-related quantities determined by band alignment are the barrier heights for charge trans- port, given by the Fermi level position at the interface. Taking Pb(Zr, Ti)O3 (PZT) as a typical ferroelectric material and applying X-ray photoelectron spectroscopy (XPS), we briefly review the interface formation and barrier heights at the inter- faces between PZT and electrodes made of various metals or conductive oxides. Polarization dependence of the Schottky barrier height at a ferroelectric/electrode interface is also directly observed using XPS.
基金Project supported by the National Natural Science Foundation of China(Grant No.11274149)the Program of Shenyang Key Laboratory of Optoelectronic Materials and Technology,China(Grant No.F12-254-1-00)
文摘This paper proposes a modified strong field approximation model for evaluating nondipole effects on the ionization of an atom in an intense laser field. The photoelectron longitudinal momentum distributions (PLMD) of a hydrogen-like atom exposed to a mid-infrared laser field is calculated. The theoretical results indicate an obvious asymmetry in the PLMD, and an offset of the PLMD peak appears in the opposite direction of the beam propagation due to nondipole effects. The peak offsets of the PLMD increased with the laser intensity, imposed by the initial state of the hydrogen-like atom.
文摘This paper calculates quantum-mechanically the photoelectron energy spectra excited by attosecond x-rays in the presence of a few-cycle laser. A photoelectron laser phase determination method is used for precise measurements of the pulse natural properties of x-ray intensity and the instantaneous frequency profiles. As a direct procedure without any previous pulse profile assumptions and time-resolved measurements as well as data fitting analysis, this method can be used to improve the time resolutions of attosecond timing and measurements with metrological precision. The measurement range is half of a laser optical cycle.
基金the National Natural Science Foundation of China(Grant Nos.11104167,11174304,and 61078080)the Excellent Middle-Aged and Youth Scientist Award of Shandong Province,China(Grant No.BS2011SF021) and the Scientific Research Foundation for the Returned Overseas Chinese Scholars
文摘We theoretically investigate the strong-field ionization of H+2 molecules in four different electronic states by calculating photoelectron angular distributions in circularly polarized fields. We find that the structure of photoelectron angular distribution depends on the molecular orbital as well as the energy of the photoelectron. The location of main lobes changes with the symmetric property of the molecular orbital. Generally, for molecules with bonding electronic states, the photoelectron’s angular distribution shows a rotation of π/2 with respect to the molecular axis, while for molecules with antibonding electronic states, no rotation occurs. We use an interference scenario to interpret these phenomena. We also find that, due to the interference effect, a new pair of jets appears in the waist of the main lobes, and the main lobes or jets of the photoelectron’s angular distribution are split into two parts if the photoelectron energy is sufficiently high.
基金Project supported by the Rising Star Programme of Shanghai,the National Natural Science Foundation of China (Grant No 10774153)the National Key Basic Research Program of China (Grant No 2006CD806000)
文摘The photoelectron angular distributions (PADs) of hydrogen atoms in an intense laser field of linear polarization are studied using the S-matrix theory in the length gauge. The PADs show main lobes along the laser polarization and jet-like structures sticking from the waist of main lobes. Our previous prediction, based on a nonperturbative scattering theory of photoionization developed by Guo et al, showing that the number of jets on one side of PADs may increase by one, three, or other odd numbers and may decrease by one when one more photon is absorbed, is confirmed by this treatment. Within the strong-field approximation, good agreement is obtained between these two quite different treatments. We further study the influence of the Coulomb attraction to PADs, by taking a Coulomb-Volkov state as the continuum state of photoelectrons. We find that under the influence of the Coulomb attraction, the PADs change greatly but the predicted phenomena still appear. This study verifies that the jet-like structures have no relation with the angular momentum of photoelectrons.