Plant roots are widely known to provide mechanical reinforcement to soils against shearing and further increase slope stability.However,whether roots provide reinforcement to loess cyclic re-sistance and how various f...Plant roots are widely known to provide mechanical reinforcement to soils against shearing and further increase slope stability.However,whether roots provide reinforcement to loess cyclic re-sistance and how various factors affect roots reinforcement during seismic loading have rarely been studied.The objective is to conduct a series of cyclic direct simple shear tests and DEM numerical simulation to investigate the cyclic behaviour of rooted loess.The effects of initial static shear stress and loading frequency on the cyclic resistance of root-soil composites were first investigated.After that,cyclic direct simple shear simulations at constant volume were carried out based on the discrete element method(PFC^(3D))to investigate the effects of root geome-try,mechanical traits and root-soil bond strength on the cyclic strength of rooted loess.It was discovered that the roots could effectively improve the cyclic resistance of loess.The cyclic resistance of the root-soil composite decreases with the increase of the initial shear stress,then increases,and improves with the increase of the frequency.The simulation result show that increases in root elastic modulus and root-soil interfacial bond strength can all enhance the cyclic resistance of root-soil composites,and the maximum cyclic resistance of the root-soil composite was obtained when the initial inclination angle of the root system was 90°.展开更多
The effect of freeze-thaw(F-T)cycles on the mechanical behaviors and internal mechanism of rock mass is a critical research topic.In permafrost or seasonally frozen regions,F-T cycles have adverse effects on the mecha...The effect of freeze-thaw(F-T)cycles on the mechanical behaviors and internal mechanism of rock mass is a critical research topic.In permafrost or seasonally frozen regions,F-T cycles have adverse effects on the mechanical properties of rock mass,leading to many serious disasters in mining and geotechnical operations.In this paper,uniaxial compression tests are carried out on cyan sandstone after different F-T cycles.The failure modes and damage evolution of cyan sandstone under F-T cycles are studied.In addition,from the perspective of fracture and pore volume,the calculation equations of rock strain under frost heaving pressure and F-T cycles are established and verified with the corresponding laboratory tests.Subsequently,based on the classical damage theory,the F-T damage variables of cyan sandstone under different F-T cycles are calculated,and the meso-damage calculation model of cyan sandstone under F-T-loading coupling conditions is derived.Furthermore,through the discrete element numerical simulation software(PFC^(3D)),the microscopic damage evolution process of cyan sandstone under uniaxial compression after F-T cycles is studied,including the change of microcracks number,distribution of microcracks,and the acoustic emission(AE)count.The goal of this study is to investigate the damage evolution mechanism of rock from the mesoscopic and microscopic aspects,which has certain guiding value for accurately understanding the damage characteristics of rock in cold regions.展开更多
文摘Plant roots are widely known to provide mechanical reinforcement to soils against shearing and further increase slope stability.However,whether roots provide reinforcement to loess cyclic re-sistance and how various factors affect roots reinforcement during seismic loading have rarely been studied.The objective is to conduct a series of cyclic direct simple shear tests and DEM numerical simulation to investigate the cyclic behaviour of rooted loess.The effects of initial static shear stress and loading frequency on the cyclic resistance of root-soil composites were first investigated.After that,cyclic direct simple shear simulations at constant volume were carried out based on the discrete element method(PFC^(3D))to investigate the effects of root geome-try,mechanical traits and root-soil bond strength on the cyclic strength of rooted loess.It was discovered that the roots could effectively improve the cyclic resistance of loess.The cyclic resistance of the root-soil composite decreases with the increase of the initial shear stress,then increases,and improves with the increase of the frequency.The simulation result show that increases in root elastic modulus and root-soil interfacial bond strength can all enhance the cyclic resistance of root-soil composites,and the maximum cyclic resistance of the root-soil composite was obtained when the initial inclination angle of the root system was 90°.
基金Projects(52474167,52104109)supported by the National Natural Science Foundation of ChinaProject(2022JJ40602)supported by the Natural Science Foundation of Hunan Province,China。
文摘The effect of freeze-thaw(F-T)cycles on the mechanical behaviors and internal mechanism of rock mass is a critical research topic.In permafrost or seasonally frozen regions,F-T cycles have adverse effects on the mechanical properties of rock mass,leading to many serious disasters in mining and geotechnical operations.In this paper,uniaxial compression tests are carried out on cyan sandstone after different F-T cycles.The failure modes and damage evolution of cyan sandstone under F-T cycles are studied.In addition,from the perspective of fracture and pore volume,the calculation equations of rock strain under frost heaving pressure and F-T cycles are established and verified with the corresponding laboratory tests.Subsequently,based on the classical damage theory,the F-T damage variables of cyan sandstone under different F-T cycles are calculated,and the meso-damage calculation model of cyan sandstone under F-T-loading coupling conditions is derived.Furthermore,through the discrete element numerical simulation software(PFC^(3D)),the microscopic damage evolution process of cyan sandstone under uniaxial compression after F-T cycles is studied,including the change of microcracks number,distribution of microcracks,and the acoustic emission(AE)count.The goal of this study is to investigate the damage evolution mechanism of rock from the mesoscopic and microscopic aspects,which has certain guiding value for accurately understanding the damage characteristics of rock in cold regions.