针对驾驶员驾驶过程中因疲劳引起的眼睛开度变化问题,在原有PERCLOS(percentage of eyelid closure over the pupil over time)标准的基础上,提出了一种基于有限状态自动机的人眼开度PERCLOS计算方法,并将其应用到疲劳驾驶预警系统中。...针对驾驶员驾驶过程中因疲劳引起的眼睛开度变化问题,在原有PERCLOS(percentage of eyelid closure over the pupil over time)标准的基础上,提出了一种基于有限状态自动机的人眼开度PERCLOS计算方法,并将其应用到疲劳驾驶预警系统中。该系统首先采用红外摄像头实时获取驾驶员的脸部视频图像,使用ASM(active shape models)算法进行人脸检测,在定位到的人脸范围内搜索人眼区域并计算人眼开度,为了避免人与摄像头距离变化影响计算结果,对人眼开度进行归一化处理;然后依据建立的有限状态自动机模型计算PERCLOS值;最后根据制定的预警机制实现基于人眼开度的疲劳预警。实验结果表明本方法能够实时监测驾驶员疲劳状况,具有对光照变化、脸部配饰不敏感的特点。展开更多
利用眼睛的状态对驾驶员疲劳进行分析主要有人眼检测和疲劳判断两大问题。驾驶过程中受到光照、角度及眼睛闭合等因素的影响,传统的人眼检测技术误码率较高,而混合复杂的检测技术实时性较差。针对该问题,文章提出一种适用于驾驶员驾驶...利用眼睛的状态对驾驶员疲劳进行分析主要有人眼检测和疲劳判断两大问题。驾驶过程中受到光照、角度及眼睛闭合等因素的影响,传统的人眼检测技术误码率较高,而混合复杂的检测技术实时性较差。针对该问题,文章提出一种适用于驾驶员驾驶过程中的人眼快速定位算法。该方法由粗到细,综合运用基于OpenCV的人脸识别、二值化、改进型灰度积分投影、Susan算子角点提取等技术,并结合PERCLOS(percentage of eyelid closure)方法进行疲劳分析。实验结果表明,该方法对各种驾驶环境下驾驶员眼睛的定位,都能快速地获得较高的精度,疲劳检测正确率较高。展开更多
为了提高对驾驶员疲劳程度检测的准确性与鲁棒性,提出了一种基于主动形状模型的多个特征融合疲劳检测算法。首先利用简单类Haar特征的级联Adaboost算法快速检测出人脸位置,然后对检测到的人脸进行基于主动形状模型(active shape model,A...为了提高对驾驶员疲劳程度检测的准确性与鲁棒性,提出了一种基于主动形状模型的多个特征融合疲劳检测算法。首先利用简单类Haar特征的级联Adaboost算法快速检测出人脸位置,然后对检测到的人脸进行基于主动形状模型(active shape model,ASM)的特征点定位,利用12个ASM特征标记点,得出眼睛、嘴部和头部的状态参数,再相应地计算出PERCLOS(percentage of eyelid closure over the pupil over time)、AECS(average eye closure speed)、哈欠频率、点头频率等4个疲劳特征,最后利用自适应神经模糊推理系统(adaptive network based fuzzy inference system,ANFIS)判决出驾驶员的3级疲劳程度(清醒、疲劳和严重疲劳)。实验结果表明,本方法对驾驶员疲劳检测准确率达93.3%,具有较高的准确性与鲁棒性。展开更多
文摘针对驾驶员驾驶过程中因疲劳引起的眼睛开度变化问题,在原有PERCLOS(percentage of eyelid closure over the pupil over time)标准的基础上,提出了一种基于有限状态自动机的人眼开度PERCLOS计算方法,并将其应用到疲劳驾驶预警系统中。该系统首先采用红外摄像头实时获取驾驶员的脸部视频图像,使用ASM(active shape models)算法进行人脸检测,在定位到的人脸范围内搜索人眼区域并计算人眼开度,为了避免人与摄像头距离变化影响计算结果,对人眼开度进行归一化处理;然后依据建立的有限状态自动机模型计算PERCLOS值;最后根据制定的预警机制实现基于人眼开度的疲劳预警。实验结果表明本方法能够实时监测驾驶员疲劳状况,具有对光照变化、脸部配饰不敏感的特点。
文摘利用眼睛的状态对驾驶员疲劳进行分析主要有人眼检测和疲劳判断两大问题。驾驶过程中受到光照、角度及眼睛闭合等因素的影响,传统的人眼检测技术误码率较高,而混合复杂的检测技术实时性较差。针对该问题,文章提出一种适用于驾驶员驾驶过程中的人眼快速定位算法。该方法由粗到细,综合运用基于OpenCV的人脸识别、二值化、改进型灰度积分投影、Susan算子角点提取等技术,并结合PERCLOS(percentage of eyelid closure)方法进行疲劳分析。实验结果表明,该方法对各种驾驶环境下驾驶员眼睛的定位,都能快速地获得较高的精度,疲劳检测正确率较高。
文摘为了提高对驾驶员疲劳程度检测的准确性与鲁棒性,提出了一种基于主动形状模型的多个特征融合疲劳检测算法。首先利用简单类Haar特征的级联Adaboost算法快速检测出人脸位置,然后对检测到的人脸进行基于主动形状模型(active shape model,ASM)的特征点定位,利用12个ASM特征标记点,得出眼睛、嘴部和头部的状态参数,再相应地计算出PERCLOS(percentage of eyelid closure over the pupil over time)、AECS(average eye closure speed)、哈欠频率、点头频率等4个疲劳特征,最后利用自适应神经模糊推理系统(adaptive network based fuzzy inference system,ANFIS)判决出驾驶员的3级疲劳程度(清醒、疲劳和严重疲劳)。实验结果表明,本方法对驾驶员疲劳检测准确率达93.3%,具有较高的准确性与鲁棒性。