期刊文献+
共找到3,975篇文章
< 1 2 199 >
每页显示 20 50 100
PCA尺度对地铁站建成环境与客流关联影响研究 被引量:1
1
作者 卢源 赵瑾 姚轶峰 《都市快轨交通》 北大核心 2025年第1期30-36,共7页
地铁站点周边建成环境影响客流量,但行人集水区(pedestrian catchment area,PCA)大小尚未统一。本研究旨在验证PCA大小是否影响地铁客流与建成环境相关性研究的结果值。以南宁市轨道交通1号线25个站点为例,选取居住人口、工作岗位、商... 地铁站点周边建成环境影响客流量,但行人集水区(pedestrian catchment area,PCA)大小尚未统一。本研究旨在验证PCA大小是否影响地铁客流与建成环境相关性研究的结果值。以南宁市轨道交通1号线25个站点为例,选取居住人口、工作岗位、商业设施等5个指标作为自变量,站点实际乘客量作因变量。采用OLS回归模型,对比不同PCA半径变量下模型拟合和影响因素的分析结果。地铁站点PCA不同范围的数据收集,对客流量与建成环境关系研究结果存在影响。针对南宁市,其PCA的半径取值为600 m,在地铁客流与建成环境相关性模型的拟合好于300 m和900 m。PCA范围会导致地铁客流与建成环境关联研究结果不一致。未来相关研究需针对不同PCA半径进行模型分析,根据拟合效果确定适宜的PCA尺度,提高研究准确性。 展开更多
关键词 城市轨道交通 行人集水区(pca) 回归模型 建成环境 客流 南宁市
在线阅读 下载PDF
应用二维经验模分解(2D-EMD)-主成分分析(PCA)组合模型定量圈定与评价胶东金与关键金属找矿靶区
2
作者 陈永清 郑澳月 +2 位作者 费金娜 赵婕 赵鹏大 《地学前缘》 北大核心 2025年第1期266-282,共17页
近年来,随着制造业和全球经济发展,全球对矿产资源的需求量大幅上升,迫切需要研究和开发新方法来勘探未发现矿产资源。然而,多阶段的成矿作用使成矿元素在地质单元内的分布呈现出复杂的叠加特征,而且大多数矿产常常伴生多种元素。本研... 近年来,随着制造业和全球经济发展,全球对矿产资源的需求量大幅上升,迫切需要研究和开发新方法来勘探未发现矿产资源。然而,多阶段的成矿作用使成矿元素在地质单元内的分布呈现出复杂的叠加特征,而且大多数矿产常常伴生多种元素。本研究将二维经验模分解(2D-EMD)与主成分分析(PCA)相结合,基于胶东金多金属矿集区水系沉积物地球化学数据,提取局部和区域多元素组合异常分量,从多阶段成矿过程产生的复杂叠加异常中识别找矿靶区。研究结果表明:(1)通过PCA建立了Au-Ag-Cd和Be-La-Mo-Nb-Th-U-Y两种多元素组合;(2)应用2D-EMD从主成分得分分别识别多元素成矿组合局部和区域异常分量;(3)局部异常分量可用于识别Au-Ag-Cd和Be-La-Mo-Nb-Th-U-Y找矿靶区,区域异常分量可识别高背景带。结合局部异常分量和花岗岩的空间分布,推断Au-Ag-Cd矿化与玲珑花岗岩和郭家岭花岗闪长岩侵入有关,Be-La-Mo-Nb-Th-U-Y矿化与郭家岭花岗闪长岩侵入体和伟德山二长岩侵入体侵入有关,郭家岭花岗闪长岩岩体具有贵金属和关键金属双重成矿特征。 展开更多
关键词 2D-EMD pca 多元素组合异常分量 胶东金多金属矿集区
在线阅读 下载PDF
氢吗啡酮皮下PCA在中重度癌痛快速滴定中的临床应用 被引量:1
3
作者 陈軻鑫 孙婧璇 +2 位作者 高翔 李航 陈建平 《中国疼痛医学杂志》 北大核心 2025年第4期310-314,共5页
50%以上的癌症病人存在不同程度的疼痛,尤其中晚期的癌症病人中70%以上存在中、重度的癌痛,其中一半以上的病人疼痛反复发作,难以控制[1],不仅给病人带来了身心痛苦,也对医师治疗策略提出了更高的要求。阿片类药物滴定是针对个体病人寻... 50%以上的癌症病人存在不同程度的疼痛,尤其中晚期的癌症病人中70%以上存在中、重度的癌痛,其中一半以上的病人疼痛反复发作,难以控制[1],不仅给病人带来了身心痛苦,也对医师治疗策略提出了更高的要求。阿片类药物滴定是针对个体病人寻找合适镇痛剂量的过程,首选口服吗啡滴定。但口服吗啡滴定过程中药物达峰时间较长,滴定周期延长,不能满足中重度癌痛病人的治疗需求[2]。因此迫切需要寻找一种能更快速控制疼痛,操作便捷,且能够缩短滴定周期的治疗方法。 展开更多
关键词 氢吗啡酮 皮下pca 快速滴定 中重度 癌痛
在线阅读 下载PDF
应用奇异值分解(SVD)-主成分分析(PCA)组合模型定量圈定与评价腾冲地块锡钨和铅锌多金属找矿靶区
4
作者 郑澳月 费金娜 +3 位作者 陈永清 宁妍云 曹一琳 赵鹏大 《地学前缘》 北大核心 2025年第1期283-301,共19页
成矿元素或元素组在一个地质单元中的富集是成岩和成矿地质过程多阶段作用的产物。基于水系沉积物地球化学数据,主成分分析(principal component analysis,PCA)可识别成矿元素组。奇异值分解(singular value decomposition,SVD)可将成... 成矿元素或元素组在一个地质单元中的富集是成岩和成矿地质过程多阶段作用的产物。基于水系沉积物地球化学数据,主成分分析(principal component analysis,PCA)可识别成矿元素组。奇异值分解(singular value decomposition,SVD)可将成矿元素组主成分得分进一步分解为两个部分:(1)成矿元素组合区域异常分量,能够表征在地壳演化过程中,由各种地质作用(岩浆作用、沉积作用和/或变质作用)形成的有利于成矿的高背景区域;(2)成矿元素组合局部异常分量,能够表征成矿作用引起的,叠加在成矿元素组合区域异常分量之上的成矿元素组合局部异常分量,应用局部异常分量能够识别找矿靶区。本次研究,首先基于国家1∶200000水系沉积物地球化学数据,应用主成分分析建立不同类型的成矿元素组;其次,利用SVD从成矿元素组的主成分得分中识别出不同类型成矿过程引起的成矿元素组合局部异常分量;最后,应用局部异常分量识别找矿靶区。最终在腾冲地块圈定15处找矿靶区,其中Sn-W找矿靶区8处,Pb-Zn-Ag找矿靶区7处。预测Sn-W潜在资源量915 Mt,Pb-Zn-Ag潜在资源量792 Mt。 展开更多
关键词 SVD pca 成矿元素组合异常分量 地球化学块体 锡钨和铅锌多金属矿 腾冲地块 西南地区
在线阅读 下载PDF
基于PCA透射光谱重构降噪的水体BOD含量模拟估算
5
作者 王一鸣 王彩玲 王洪伟 《光谱学与光谱分析》 北大核心 2025年第2期386-393,共8页
生化需氧量(BOD)是能够直接体现水体有机物污染程度的重要指标,水体BOD的实时监测在水资源保护、水环境改善等相关领域具有重要意义。传统的BOD测量方法会消耗大量的人力物力资源,且测量周期较长,不能迅速的反映水体的变化状况,无法实... 生化需氧量(BOD)是能够直接体现水体有机物污染程度的重要指标,水体BOD的实时监测在水资源保护、水环境改善等相关领域具有重要意义。传统的BOD测量方法会消耗大量的人力物力资源,且测量周期较长,不能迅速的反映水体的变化状况,无法实现对突发水污染事件及时有效的预警。机器学习在水体监测领域已被广泛应用,为了解决机器学习模型输入变量获取困难,且存在缺失值的问题,进一步结合高光谱技术探索对水体BOD含量精准快速的估算。为此,采集十个不同浓度BOD标液的原始光谱数据,通过白板校正得到100组透射光谱数据。提出了一种基于主成分分析(PCA)透射光谱重构的降噪技术,利用PCA算法提取原始透射光谱的主成分特征向量,再利用累计方差贡献率达到一定百分比的前一部分主成分特征向量对整个数据集进行重构。采用了前2、前10和前15个主成分特征向量对透射光谱数据进行了重构,并与传统光谱数据降噪方法进行了对比。结合支持向量机(SVM)模型和反向传播神经网络(BPNN)模型建立了水体BOD含量估算模型。结果显示,BPNN模型在回归精度和拟合程度上优于SVM模型,且降噪效果更为显著。使用前2个特征向量重构降噪的模型未达预期拟合,可能是由于信息丢失。而以前10个特征向量重构降噪的BPNN模型表现最佳,RMSE为0.0406,R^(2)达到0.9803。前15个特征向量的重构并未提升降噪效果,可能因为超过10个的特征向量增加了冗余信息。实验验证了使用PCA重构透射光谱降噪的可行性,并为水体BOD含量估算提供了新的思路。 展开更多
关键词 pca 透射光谱 SVM BP神经网络 BOD含量估算
在线阅读 下载PDF
基于PCA-TSO-BPNN模型的海底管道内腐蚀速率预测研究 被引量:1
6
作者 肖荣鸽 刘国庆 +3 位作者 刘博 魏王颖 庄琦 靳帅帅 《热加工工艺》 北大核心 2025年第4期82-88,共7页
近年来,随着我国海洋油气勘探开发力度不断增强,在役的和建设中的海底油气管道越来越多,海底油气管道内腐蚀速率预测对于海底油气管道的日常运行、维护和检修极为重要。为了提高海底油气管道内腐蚀速率预测精度和稳定性,建立了基于主成... 近年来,随着我国海洋油气勘探开发力度不断增强,在役的和建设中的海底油气管道越来越多,海底油气管道内腐蚀速率预测对于海底油气管道的日常运行、维护和检修极为重要。为了提高海底油气管道内腐蚀速率预测精度和稳定性,建立了基于主成分分析(Principal Component Analysis,PCA)和金枪鱼群算法(Tuna Swarm Optimization,TSO)优化BP神经网络的海底管道内腐蚀速率预测组合模型PCA-TSO-BPNN。运用PCA进行数据降维,筛选出海底管道内腐蚀速率的主要影响因素;建立海底管道内腐蚀速率BPNN预测模型,并采用TSO算法对BPNN预测模型的权值和阈值参数进行寻优;利用PCA-TSO-BPNN组合模型对海底管道内腐蚀速率进行预测,并与对比模型进行比较,验证PCA-TSO-BPNN组合模型的可行性和可靠性。结果表明:PCA-TSO-BPNN组合模型的平均绝对百分误差(MAPE)和均方根误差(RMSE)分别为1.8441%和0.06757,远低于对比模型,组合模型具有较高的预测精度和稳定性,可为海底管道内腐蚀防护和流动保障提供决策支持。 展开更多
关键词 BP神经网络 主成分分析 金枪鱼群算法 海底管道 腐蚀速率预测
在线阅读 下载PDF
基于PCA的体素化GICP点云配准算法
7
作者 徐浩鸿 付昱凯 崔世界 《组合机床与自动化加工技术》 北大核心 2025年第1期155-159,共5页
为了满足工业中对目标工件进行三维重建的速度和精度,通过分析算法配准过程提出一种基于主成分分析(PCA)和体素化广义迭代最近点(VGICP)的点云配准策略。首先,PCA算法为精配准阶段提供良好的初始位姿,其中在进行主方向矫正时,在保证数... 为了满足工业中对目标工件进行三维重建的速度和精度,通过分析算法配准过程提出一种基于主成分分析(PCA)和体素化广义迭代最近点(VGICP)的点云配准策略。首先,PCA算法为精配准阶段提供良好的初始位姿,其中在进行主方向矫正时,在保证数据整体特征的基础上进行体素下采样来减少由于计算配准误差所消耗的时间,提高计算速度;其次,精配准阶段采用的VGICP算法对高度依赖最近邻搜索的GICP算法进行体素划分,使用多点分布聚合的方法,可以从较少数量的点中稳健地估计体素分布,具有较快的处理速度。基于PCA改进的VGICP算法将配准效率提高60%以上,并且优于常用配准算法,同时保持了良好的配准精度。 展开更多
关键词 体素化广义迭代最近点算法 主成分分析 点云配准 下采样
在线阅读 下载PDF
PCA与叙事设计的传统工艺文创产品设计研究
8
作者 刘钊 《家具与室内装饰》 北大核心 2025年第7期84-89,共6页
研究提出PCA与叙事设计双轨驱动的方法,构建了传统工艺文创产品设计的创新框架。通过PCA的量化解析和叙事设计的文化转译,结合形态重构、色彩叙事及交互赋能的三元策略,系统性地实现了传统工艺文化基因的“可量化解析-可感知转译-可场... 研究提出PCA与叙事设计双轨驱动的方法,构建了传统工艺文创产品设计的创新框架。通过PCA的量化解析和叙事设计的文化转译,结合形态重构、色彩叙事及交互赋能的三元策略,系统性地实现了传统工艺文化基因的“可量化解析-可感知转译-可场景化落地”。该方法在保留文化保真度的同时,显著提升了产品的现代适应性,并为高熵值符号提出了分众转化路径。研究以淮阳泥泥狗为实证对象,验证了框架的有效性,为传统工艺文创设计提供了标准化参考,并为非遗现代化创新提供了科学与人文相结合的新思路。 展开更多
关键词 主成分分析(pca) 叙事设计 传统工艺 文创设计 现代化创新
在线阅读 下载PDF
PCA+GWO集成特征选择和模型堆叠的客户流失预测
9
作者 刘梅 郑立君 +1 位作者 段永良 段红秀 《计算机工程与应用》 北大核心 2025年第15期329-342,共14页
客户的长期稳定对酒店营收和提高竞争力具有重要意义。在客户流失预测研究中,生产环境采集的数据存在数据量大、维度高、噪点多等问题,导致机器模型的准确率、稳定性和泛化能力下降。针对此类问题,设计了基于PCA+GWO的集成特征选择方法... 客户的长期稳定对酒店营收和提高竞争力具有重要意义。在客户流失预测研究中,生产环境采集的数据存在数据量大、维度高、噪点多等问题,导致机器模型的准确率、稳定性和泛化能力下降。针对此类问题,设计了基于PCA+GWO的集成特征选择方法,并用模型堆叠构建了客户流失预测模型。提出了利用Pearson系数和随机森林(RF)的特征重要性来确定需要降维特征组的方法。改进了灰狼优化算法(GWO)中的灰狼位置更新机制和收敛条件,并将其应用于选择最佳特征子集的过程中。选取了10种不同的机器学习模型进行训练,挑选出F1-score表现最优的模型作为基模型,进行元模型训练。实验结果表明,使用某酒店客户信息数据集时,改进后的GWO算法收敛速度显著提升,且预测模型的F1-score达到了97.9%,该模型具有较强的泛化能力。 展开更多
关键词 特征选择 随机森林(RF) 主成分分析(pca) 灰狼优化(GWO)算法 模型堆叠
在线阅读 下载PDF
基于改进型PCA全极化雷达回波信号融合的动目标检测方法
10
作者 庞岳 岳富占 +4 位作者 夏正欢 张闯 王洪强 高文宁 张瑶 《现代雷达》 北大核心 2025年第2期126-133,共8页
树林遮蔽场景下的雷达回波信号存在信噪比低、信号幅度和相位起伏等问题,极大地增加了目标检测难度。针对信号级中低分辨率雷达探测树林遮蔽目标的应用需求,文中研究了一种基于改进型主成分分析(PCA)全极化雷达回波信号融合的动目标检... 树林遮蔽场景下的雷达回波信号存在信噪比低、信号幅度和相位起伏等问题,极大地增加了目标检测难度。针对信号级中低分辨率雷达探测树林遮蔽目标的应用需求,文中研究了一种基于改进型主成分分析(PCA)全极化雷达回波信号融合的动目标检测方法。该方法首先在杂波背景下提取动目标信号,并利用改进型PCA进行全极化雷达回波信号融合;然后分别在时间维和距离维进行目标检测,并通过非相参积累方法重检测,有效排除目标混叠和虚警干扰,从而检测出目标并提取了其关注区域;最后通过自主研发的L波段全极化雷达系统,对该方法进行了实验验证。实验结果表明:该方法对于树林遮蔽环境下动目标具有很好的检测效果,显著提升了L波段全极化雷达在树林遮蔽条件下的目标检测性能。 展开更多
关键词 L波段全极化雷达 主成分分析 数据融合 树林遮蔽场景 目标检测
在线阅读 下载PDF
基于特征层融合的PCA聚类分析法在烟叶近红外光谱中的相似度分析
11
作者 张延琛 《农产品加工》 2025年第2期57-60,65,共5页
为提高近红外光谱在分辨烟叶相似度应用中的准确性,将人脸识别技术、主元分析与聚类分析相结合,提出一种基于特征层融合的PCA聚类分析在烟叶近红外光谱相似度的分析方法。首先,对近红外光谱进行标准化与一阶、二阶导数预处理选择要分析... 为提高近红外光谱在分辨烟叶相似度应用中的准确性,将人脸识别技术、主元分析与聚类分析相结合,提出一种基于特征层融合的PCA聚类分析在烟叶近红外光谱相似度的分析方法。首先,对近红外光谱进行标准化与一阶、二阶导数预处理选择要分析得波数区间段,然后应用人脸识别技术分别对一阶、二阶导数的曲线进行图像分割,分别进行PCA求取特征向量,在特征层进行数据融合,再对融合的数据进行第二次PCA分析,通过设置的阈值选择特征向量与特征空间;最后对特征向量进行聚类分析及烟叶相似度的分辨。结果表明,该方法能够准确地对烟草相似度进行分析。 展开更多
关键词 近红外光谱 预处理 pca 欧式距离 特征层融合
在线阅读 下载PDF
基于PCA−Transformer的工作面瓦斯浓度预测算法研究
12
作者 杨建 舒龙勇 +2 位作者 张书林 秦凯 崔聪 《工矿自动化》 北大核心 2025年第5期1-7,共7页
针对目前工作面瓦斯浓度预测的研究样本在特征维度及数据体量方面偏小,难以从大规模时序数据中挖掘出瓦斯浓度长时间尺度上波动规律的问题,提出一种基于主成分分析(PCA)−Transformer的工作面瓦斯浓度预测算法。首先,对瓦斯浓度原始数据... 针对目前工作面瓦斯浓度预测的研究样本在特征维度及数据体量方面偏小,难以从大规模时序数据中挖掘出瓦斯浓度长时间尺度上波动规律的问题,提出一种基于主成分分析(PCA)−Transformer的工作面瓦斯浓度预测算法。首先,对瓦斯浓度原始数据进行数据清洗,采用最小−最大特征缩放标准化公式对清洗后的数据进行归一化操作。然后,利用PCA对7种影响工作面瓦斯浓度的因素(上隅角瓦斯浓度、回风流瓦斯浓度、氧气浓度、一氧化碳浓度、温度、纯流量、风速)进行降维处理,有效剔除与工作面浓度相关性较低的影响因素。最后,将处理后的训练集输入到Transformer模型,通过编码器、解码器提取瓦斯浓度内在的变化规律和特征。以某高瓦斯矿井224工作面监测数据为样本,利用PCA−Transformer预测模型与长短时记忆神经网络(LSTM)、PCA−LSTM及Transformer等预测模型进行对比分析,结果表明:①PCA−Transformer模型的平均绝对误差为0.0203,均方误差为0.0472,运行时间为86 s,能够满足煤矿生产对瓦斯浓度预测的精度与时效要求。②相较于LSTM,PCA−LSTM,Transformer等预测模型,PCA−Transformer预测模型能够更好地拟合瓦斯浓度变化趋势,有效识别波峰、波谷序列特征,计算耗时最少,验证了PCA−Transformer预测模型的有效性。 展开更多
关键词 工作面瓦斯浓度预测 瓦斯时序数据 主成分分析 TRANSFORMER 降维处理
在线阅读 下载PDF
基于RS-PCA-SVM的建筑项目安全预测模型 被引量:1
13
作者 李永清 马亚冰 凤亚红 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2024年第9期1243-1247,1261,共6页
为了减少建筑项目安全事故的发生,文章提出一种基于RS-PCA-SVM建筑项目安全组合预测模型,采用粗糙集理论(rough set,RS)对数据进行属性约简,剔除交叉和冗余信息,降低输入变量维数和计算复杂度,减少训练时间;利用主成分分析(principal co... 为了减少建筑项目安全事故的发生,文章提出一种基于RS-PCA-SVM建筑项目安全组合预测模型,采用粗糙集理论(rough set,RS)对数据进行属性约简,剔除交叉和冗余信息,降低输入变量维数和计算复杂度,减少训练时间;利用主成分分析(principal component analysis,PCA)法进行降维处理,除去贡献率较低的主成分,将剩余主成分作为支持向量机(support vector machine,SVM)的输入变量,并选择自适应权重粒子群优化算法(particle swarm optimization,PSO)优化SVM的参数,避免参数选择的盲目性。结果表明:该模型的平均预测准确率为93.78%,相比传统方法预测精度高、计算速度快。 展开更多
关键词 属性约简 主成分分析(pca)法 支持向量机(SVM) 预测模型
在线阅读 下载PDF
水体透射光谱结合主成分分析(PCA)改进化学需氧量(COD)含量估算研究 被引量:4
14
作者 王彩玲 位欣欣 《中国无机分析化学》 CAS 北大核心 2024年第4期410-417,共8页
为了解决传统的化学需氧量(Chemical Oxygen Demand,COD)测量方法耗时较长,不利于快速、实时地获取水体中COD的信息等问题。通过采集100组COD水体光谱信息,分别使用3种不同的高光谱数据预处理方法对光谱数据进行预处理,并基于不同的预... 为了解决传统的化学需氧量(Chemical Oxygen Demand,COD)测量方法耗时较长,不利于快速、实时地获取水体中COD的信息等问题。通过采集100组COD水体光谱信息,分别使用3种不同的高光谱数据预处理方法对光谱数据进行预处理,并基于不同的预处理方法分别建立高斯过程回归模型(Gaussian Process Regression,GPR)和BP神经网络模型,分析不同预处理方法对模型精度的影响,建立了基于透射光谱测量结合主成分分析(Principal Component Analysis,PCA)改进水体COD含量估算模型。对各模型结合PCA数据降维方法进行模型的改进,通过比较模型的精度选择最优模型进行水体COD含量的检测。结果显示:相比于原始光谱数据建立的GPR模型和BP神经网络模型,数据预处理后的模型精度明显提升;且结合PCA对预处理后的数据进一步降维处理后,模型精度得到了进一步的提升。其中,基于标准正态变量变换特征结合PCA改进BP神经网络模型R 2高达0.9940,均方根误差RMSE为0.022540。证明了基于PCA数据降维方法对预处理后的光谱数据进行降维处理,有利于去除光谱中的冗余信息,提取特征信息,可以实现COD含量估算模型的优化,从而为传统COD测量方法存在的问题提出了一种新的解决思路。 展开更多
关键词 透射光谱法 COD含量预测 pca 高斯过程回归 BP神经网络
在线阅读 下载PDF
基于CLAHE-PCA的矿井低照度图像增强研究 被引量:3
15
作者 苗作华 张立 +5 位作者 徐厚友 王梦婷 段宏山 白宇宸 高健铭 周浩 《金属矿山》 CAS 北大核心 2024年第6期165-172,共8页
地下矿山巷道环境往往面临光线不足,难以通过获取其暗通道图像判断岩体剥落等异常情况。针对矿井巷道暗通道图像对比度低的问题,提出了一种基于CLAHE-PCA的图像增强算法。首先使用CLAHE算法将获取的矿井巷道原始暗通道图像做对比度增强... 地下矿山巷道环境往往面临光线不足,难以通过获取其暗通道图像判断岩体剥落等异常情况。针对矿井巷道暗通道图像对比度低的问题,提出了一种基于CLAHE-PCA的图像增强算法。首先使用CLAHE算法将获取的矿井巷道原始暗通道图像做对比度增强处理,然后使用自适应Gamma算法对亮度低的图像予以增加对比度矫正;将矫正后获得的灰度图转为RGB图像,通过PCA对其进行平滑处理,以便更多地还原暗通道图像的细节。以峰值信噪比、结构相似性、平均梯度和信息熵等作为评价指标,对试验结果进行验证。结果表明:该方法能够有效处理低对比度的矿井巷道图像,处理后的图像结构相似性达到93%,鲁棒性强,同时能够更多地还原图像的细节。 展开更多
关键词 低照度图像 暗通道 图像增强 限制对比度的自适应直方图均衡化 pca
在线阅读 下载PDF
基于PCA-SVM结合共聚焦拉曼光谱的特级初榨橄榄油掺伪压榨菜籽油定量分析 被引量:5
16
作者 彭楠 方俊 毛潭 《中国油脂》 CAS CSCD 北大核心 2024年第2期70-74,共5页
为了促进国内橄榄油市场的健康发展,对掺伪同样存在天然类胡萝卜素的低温压榨菜籽油的特级初榨橄榄油进行了定量鉴别研究。采用共聚焦拉曼光谱技术对不同掺伪浓度油样进行测试,基于密度泛函理论对油样的拉曼光谱峰的归属进行了理论分析... 为了促进国内橄榄油市场的健康发展,对掺伪同样存在天然类胡萝卜素的低温压榨菜籽油的特级初榨橄榄油进行了定量鉴别研究。采用共聚焦拉曼光谱技术对不同掺伪浓度油样进行测试,基于密度泛函理论对油样的拉曼光谱峰的归属进行了理论分析,并对拉曼光谱数据进行主成分分析(PCA),然后利用支持向量机(SVM)构建PCA-SVM模型。另外,对PCA-SVM模型的检出限进行了研究。结果表明:特级初榨橄榄油与低温压榨菜籽油的拉曼光谱存在一定差异,最明显的光谱差异主要集中在谱峰1008、1161、1528 cm^(-1)和谱段2800~3000 cm^(-1)内,与密度泛函理论对不同油样拉曼光谱峰的分析一致;不考虑类胡萝卜素特征信号建立的PCA-SVM模型决定系数大于0.989,均方根误差小于2.990%,检出限为2%(低温压榨菜籽油体积分数);在特级初榨橄榄油掺伪定量分析中,考虑类胡萝卜素的特征信号有助于提高模型预测精度,但仅限于掺伪低价植物油中无类胡萝卜素存在的情况;PCA-SVM模型在不考虑类胡萝卜素特征信号的情况下依然具有良好的定量预测效果。综上,所建立的PCA-SVM模型可以用于掺伪2%以上低温压榨菜籽油的特级初榨橄榄油的定量鉴别。 展开更多
关键词 特级初榨橄榄油 低温压榨菜籽油 pca-SVM 拉曼光谱 密度泛函理论
在线阅读 下载PDF
基于2D-SPWVD与PCA-SSA-RF的超宽带雷达人体跌落动作辨识方法
17
作者 杨桢 段雨昕 +3 位作者 李鑫 吴方泽 纪力文 冯丰 《电子测量与仪器学报》 CSCD 北大核心 2024年第10期147-158,共12页
针对现有超宽带雷达人体姿态识别研究领域缺少对相似动作辨识的问题,提出一种时频分析结合随机森林(RF)的动作辨识模型。提出基于平滑伪维格纳-威利分布(SPWVD)的二维平滑伪维格纳-威利分布(2D-SPWVD)时频分析方法,对预处理后的人体动... 针对现有超宽带雷达人体姿态识别研究领域缺少对相似动作辨识的问题,提出一种时频分析结合随机森林(RF)的动作辨识模型。提出基于平滑伪维格纳-威利分布(SPWVD)的二维平滑伪维格纳-威利分布(2D-SPWVD)时频分析方法,对预处理后的人体动作回波信号进行时频特征提取;利用主成分分析法(PCA)对特征矢量进行降维处理,选择累计贡献率较高的前30个主成分作为新的特征矢量输入到麻雀搜索算法(SSA)优化的RF分类模型中,用于有障碍条件下5种不同人体相似跌落动作辨识。实验结果表明:预处理算法有效地提升了动作回波信号信噪比,PCA-SSA-RF分类模型能有效辨识5种不同人体跌落动作,克服了数据的特殊性以及障碍物的干扰,准确率高达96.6%。在实时数据流中的跌倒检测任务中,模型的分类平均准确率达到了93%,并与RF、PSO-RF等多个不同经典分类模型深入对比,准确率较高且整体所需时间较短,兼具了准确性和分类效率。验证了所提方法的优越性与有效性。 展开更多
关键词 超宽带雷达 动作辨识 时频分析 2D-SPWVD pca 随机森林
在线阅读 下载PDF
基于PCA-FSEM方法的风力发电机可靠性研究
18
作者 郑玉巧 郎启发 +2 位作者 施成龙 刘宇航 刘燕杰 《兰州理工大学学报》 CAS 北大核心 2024年第1期35-40,共6页
针对西北某风电场相关运行数据,对风力发电机进行可靠性研究.考虑运行数据之间相关性和冗余度,采用主成分分析(PCA)法进行降维,选取部分关键可靠性指标且根据关键指标运行数据,结合模糊理论建立可靠性评价模型,并选取部分风力发电机运... 针对西北某风电场相关运行数据,对风力发电机进行可靠性研究.考虑运行数据之间相关性和冗余度,采用主成分分析(PCA)法进行降维,选取部分关键可靠性指标且根据关键指标运行数据,结合模糊理论建立可靠性评价模型,并选取部分风力发电机运行数据进行模型验证.结果表明,PCA法提取主成分累积方差贡献率为87.585%,可综合表述风力发电机的可靠性信息.单一可靠性指标评价时,虽然B02单机可利用率高达98%,但总发电量最低,虽然A04单机可利用率最低,但发电量较高,说明单一可靠性指标评价时存在误差.A05、B03单机各项指标均高,实际运行状态良好,发电量高,说明综合可靠性更高,与研究结果一致.因此,基于PCA模糊理论建立的风力发电机可靠性模糊理论评价模型(FSEM)符合实际运行状态,对定量评估机组可靠性具有指导意义. 展开更多
关键词 风力发电机 pca 可靠性 FESM
在线阅读 下载PDF
基于PCA-BP神经网络的巷道通风摩擦阻力系数预测模型 被引量:4
19
作者 高科 吕航宇 +1 位作者 戚志鹏 刘玉姣 《矿业安全与环保》 CAS 北大核心 2024年第1期7-13,共7页
根据实测巷道通风摩擦阻力系数数据的特点,建立了主成分分析PCA-BP神经网络预测模型。采用PCA法对影响巷道通风摩擦阻力系数的支护类型、断面形状、巷道宽、巷道高、支护部分周边长、巷道断面积和巷道长度7个因素进行降维。将降维后因... 根据实测巷道通风摩擦阻力系数数据的特点,建立了主成分分析PCA-BP神经网络预测模型。采用PCA法对影响巷道通风摩擦阻力系数的支护类型、断面形状、巷道宽、巷道高、支护部分周边长、巷道断面积和巷道长度7个因素进行降维。将降维后因素的贡献率进行排序筛选,得到3个主成分指标(F_(1)、F_(2)和F_(3)),作为BP神经网络输入层的神经元。利用实测数据对PCA-BP神经网络模型进行训练和测试,并将测试结果与支持向量机回归(SVM)模型和BP神经网络模型的测试结果进行对比,结果显示:全因素的BP神经网络预测模型和SVM预测模型的平均精度分别为92.9420%、93.0235%,而PCA-BP预测模型的平均精度达到了96.4325%。PCA-BP神经网络模型不但简化了网络结构,更提高了网络的泛化能力,使预测误差更小、精度更高,为更准确地获得巷道通风摩擦阻力系数提供了一种有效的方法。 展开更多
关键词 矿井通风 巷道通风摩擦阻力系数 预测模型 pca-BP神经网络 主成分分析 影响因素
在线阅读 下载PDF
基于PCA-EWM两级特征融合和NGO-GRU的梁桥损伤诊断
20
作者 项长生 刘辰雨 +2 位作者 赵华 刘屺阳 李峰 《科学技术与工程》 北大核心 2024年第28期12277-12286,共10页
为了提高损伤识别中单一指标对损伤的灵敏度和抗噪能力,基于模态应变能理论,提出联合主成分分析(principal component analysis,PCA)和熵权融合(entropy weight method,EWM)的两级特征融合方法,并使用北方苍鹰优化算法(northern goshawk... 为了提高损伤识别中单一指标对损伤的灵敏度和抗噪能力,基于模态应变能理论,提出联合主成分分析(principal component analysis,PCA)和熵权融合(entropy weight method,EWM)的两级特征融合方法,并使用北方苍鹰优化算法(northern goshawk optimization,NGO)结合门控循环单元(gated recurrent unit,GRU)进行桥梁损伤程度预测。首先,基于传统的模态应变能理论,构造出对角模态应变能比,由此衍生出对角模态应变能比变化率,对角模态应变能比耗散率,标准化对角模态应变能比差指标。其次,使用主成分分析实现指标内特征提取,熵权法融合指标间的特征,从而构造出加权决策指标(weighted decision index,WDI)。将单个模态应变能衍生指标输入到NGO-GRU混合神经网络中,损伤程度为输出,从而建立指标值与损伤程度之间的关系,进而实现损伤量化。通过三跨连续梁桥数值模型对所提出的方法进行验证,结果表明:加权决策指标具有良好的损伤定位能力和抗噪性,混合神经网络具有较高的损伤预测精度,预测准确率为91.14%。 展开更多
关键词 损伤识别 梁桥 模态应变能 主成分分析(pca) 门控循环单元(GRU)
在线阅读 下载PDF
上一页 1 2 199 下一页 到第
使用帮助 返回顶部