Introduction Trabeculae carneae are irregular structures that cover the endocardial surfaces of both ventricles of human heart and account for a significant portion of the ventricular mass.However,the role of trabecul...Introduction Trabeculae carneae are irregular structures that cover the endocardial surfaces of both ventricles of human heart and account for a significant portion of the ventricular mass.However,the role of trabeculae carneae in left ventricular(LV)function is not well understood.Previous reports suggested that trabeculae help squeeze blood from the apical region during systole[1].Our recent study suggests that trabeculae carneae hypertrophy and fibrosis contribute to increased LV stiffness in patients with diastolic heart failure,and severing free-running trabeculae carneae may improve diastolic compliance of the LV[2].Objective To understand the role of trabeculae carneae in the left ventricular diastolic and systolic functions using anatomically detailed patient-specific finite element models of the human LV.Methods(1)Image acquisition An explanted human heart was collected from a 63 year old female donor with a history of stroke and congestive heart failure within 24 hours postmortem from South Texas Blood and Tissue Center(San Antonio,TX).The heart was de-identified in accordance with Institutional Review Board(IRB)requirements and informed consent for research was obtained from the donor’s family.Three-dimensional MRI scanning was conducted on a 3T(128 MHz)MRI system(TIM Trio,Siemens Medical Solutions),comprised of a superconducting magnet with a 60 cm diameter accessible bore,when the heart was submerged in a saline filled plastic container.(2)Finite element analysis Three distinct LV models were derived from the MR images.The first model was the intact trabeculated model(TM)which contained all trabeculae carneae and papillary muscles.This high-resolution anatomically detailed 3D model of the LV was segmented from 2D MR images in DICOM format using Mimics(Materialise NV,Leuven,Belgium).The second model was the papillary model(PM),in which the papillary muscles remain intact but most of the trabeculae carneae were excluded in the smoothing process.The third model was the smooth model(SM)in which the trabeculae carneae and papillary muscles were excluded during image segmentation.Finite element(FE)models of the TM,PM and SM were created by meshing 3D reconstructions of the acquired MR images using tetrahedral elements(ICEM,Ansys Inc.,Canonsburg,PA).The mesh size was selected after a pilot study on mesh sensitivity.The passive cardiac muscle was characterized as a hyperelastic,incompressible,transversely isotropic material with a Fung exponential strain energy function.The material constants were determined by matching the end-diastolic pressure-volume relationship with the empirical Klotz relation[3].A rule-based myocardial fiber algorithm was adopted to generate the myofiber directions[4].The active contraction(i.e.,systolic contraction)was modeled by the time varying'Elastance'active contraction model.The contractile parameter Tmax was determined and calibrated so that the FE predicted ejection fraction(EF)of TM matched the EF of a normal human heart at the specified end-systolic pressure[3].The analysis of the TM,PM,and SM models were implemented using the open-source finite element package FEBio(www.febio.org).In all models,the rigid body motion was suppressed by constraining the base from moving in all directions.The end-diastolic and end-systolic pressure-volume relationships(EDPVR and ESPVR)were obtained and characterized by an exponential function and the slope,respectively.Results Our simulation results showed that independent of the material model,the EDPVR curve shifts to the right in PM and SM compared to TM.However,the ESPVR curve may shift to the right or left in PM compared to TM,while shifting tothe right in SM for all material models.EDPVR was steeper in TM compared to PM and SM;however,ESPVR was found to be steeper in PM than in TM and SM.The predicted parameters of EDPVR and ESPVR showed lower average exponential term in PM and SM compared to TM,indicating a significant improvement in the compliance and global diastolic function of less trabeculated LV models(P<0.01).Similarly,the higher average elastance EEs and lower volume intersect in PM compared to TM,suggests that mild cutting of trabeculae carneae slightly improves the global systolic function of the LV(P=0.89).However,cutting all trabeculae carneae and papillary muscles in SM had a significant adverse effect on the global systolic function(P<0.01).Discussion and conclusions Most patient-specific LV studies in the literature have used smoothed ventricular geometries.We used high resolution MRI to capture the endocardial details of the LV.Though reproducing very fine trabeculae carneae was restricted by the MRI resolution,our results demonstrated the importance of considering endocardial structures,i.e.papillary muscles and trabeculae carneae,in the assessment of LV global function in patient-specific computational LV models.The present work is consistent with the observation that diastolic performance improved after severing trabeculae carneae due to a reduction in LV stiffness[2].Furthermore,our results also suggest that severing trabeculae carneae(without affecting papillary muscle)may improve LV systolic function.Our model results are consistent with experimental measurements using ex vivo rabbit heart perfusion[5].This improvement would be greater in hypertrophic hearts because trabeculae carneae are also hypertrophic and more fibrotic.Left ventricular hypertrophy is often associated with heart failure with preserved ejection fraction(HFpEF).There is no effective treatment for HFpEF,which is characterized by impaired diastolic relaxation due to increased LV stiffness.Our results indicate that trabecular cutting could be an effective treatment for HFpEF.展开更多
Background Current bottleneck of patient-specific coronary plaque model construction is the resolution of in vivo medical imaging.The threshold of cap thickness of vulnerable coronary plaques is 65 microns,while the r...Background Current bottleneck of patient-specific coronary plaque model construction is the resolution of in vivo medical imaging.The threshold of cap thickness of vulnerable coronary plaques is 65 microns,while the resolution of in vivo coronary intravascular ultrasound(IVUS)images is 150-200 microns,which is not enough to identify vulnerable plaques with thin caps and construct accurate biomechanical plaque models.Optical coherence tomography(OCT)with a 15-20μm resolution has the capacity to identify thin fibrous cap.IVUS and OCT images could complement each other and provide for more accurate plaque morphology,especially,fibrous cap thickness measurements.A modeling approach combining IVUS and OCT was introduced in our previous publication for cap thickness quantification and more accurate cap stress/strain calculations.In this paper,patient baseline and follow-up IVUS and OCT data were acquired and multimodality image-based Fluidstructure interaction(FSI)models combining 3D IVUS,OCT,angiography were constructed to better quantify human coronary atherosclerotic plaque morphology and plaque stress/strain conditions and investigate the relationship of plaque vulnerability and morphological and mechanical factors.Methods Baseline and 10-Month follow-up in vivo IVUS and OCT coronary plaque data were acquired from one patient with informed consent obtained.Co-registration and segmentation of baseline and follow-up IVUS and OCT images were performed for modeling use.Baseline and follow-up 3D FSI models based on IVUS and OCT were constructed to simulate the mechanical factors which integrating plaque morphology were employed to predict plaque vulnerability.These 3D models were solved by ADINA(ADINA R&D,Watertown,MA,USA).The quantitative indices of cap thickness,lipid percentage were classified according to histological literatures and denoted as Cap Index and Lipid Index.Cap Index,Lipid Index and Morphological Plaque Vulnerability Index(MPVI)were chosen to quantify plaque vulnerability,respectively.Random forest(RF)which was based 13 extracted features including morphological and mechanical factors was used for plaque vulnerability classification and prediction.Over sampling scheme and a 5-fold crossvalidation procedure was employed in all 45 slices for training and testing sets.Single and all different combinations of morphological and mechanical risk factors were used for plaque progression prediction.Results When Cap Index was used as the measurement,minimum cap thickness(MCT)was the best single predictor which area under curve(AUC)is 0.782 0;the combination of MCT,critical plaque wall strain(CPWSn),critical wall shear stress(CWSS)and cap wall shear stress(CapWSS)was the best predictor with ACU=0.868 6.When Lipid Index was used as the measurement,the lipid percentage(LP)was the best single predictor which AUC value is 0.857 8;the combination of Mean cap thickness(MeanCT),LP,CWSS and cap plaque wall stress(CapPWS)and was the best predictor with ACU=0.9821.When MPVI was used as the measurement,MCT was the best single predictor which AUC value is 0.782 9;the combination of MCT,LP,plaque area(PA),CPWSn and CapWSS was the best predictor with ACU=0.872 9.Conclusions Combinations of morphological and mechanical risk factors had higher prediction accuracy,compared to the prediction of single factors and other combination of morphological factors.展开更多
基金supported by a National Innovation Award(15IRG23320009)from the American Heart Association
文摘Introduction Trabeculae carneae are irregular structures that cover the endocardial surfaces of both ventricles of human heart and account for a significant portion of the ventricular mass.However,the role of trabeculae carneae in left ventricular(LV)function is not well understood.Previous reports suggested that trabeculae help squeeze blood from the apical region during systole[1].Our recent study suggests that trabeculae carneae hypertrophy and fibrosis contribute to increased LV stiffness in patients with diastolic heart failure,and severing free-running trabeculae carneae may improve diastolic compliance of the LV[2].Objective To understand the role of trabeculae carneae in the left ventricular diastolic and systolic functions using anatomically detailed patient-specific finite element models of the human LV.Methods(1)Image acquisition An explanted human heart was collected from a 63 year old female donor with a history of stroke and congestive heart failure within 24 hours postmortem from South Texas Blood and Tissue Center(San Antonio,TX).The heart was de-identified in accordance with Institutional Review Board(IRB)requirements and informed consent for research was obtained from the donor’s family.Three-dimensional MRI scanning was conducted on a 3T(128 MHz)MRI system(TIM Trio,Siemens Medical Solutions),comprised of a superconducting magnet with a 60 cm diameter accessible bore,when the heart was submerged in a saline filled plastic container.(2)Finite element analysis Three distinct LV models were derived from the MR images.The first model was the intact trabeculated model(TM)which contained all trabeculae carneae and papillary muscles.This high-resolution anatomically detailed 3D model of the LV was segmented from 2D MR images in DICOM format using Mimics(Materialise NV,Leuven,Belgium).The second model was the papillary model(PM),in which the papillary muscles remain intact but most of the trabeculae carneae were excluded in the smoothing process.The third model was the smooth model(SM)in which the trabeculae carneae and papillary muscles were excluded during image segmentation.Finite element(FE)models of the TM,PM and SM were created by meshing 3D reconstructions of the acquired MR images using tetrahedral elements(ICEM,Ansys Inc.,Canonsburg,PA).The mesh size was selected after a pilot study on mesh sensitivity.The passive cardiac muscle was characterized as a hyperelastic,incompressible,transversely isotropic material with a Fung exponential strain energy function.The material constants were determined by matching the end-diastolic pressure-volume relationship with the empirical Klotz relation[3].A rule-based myocardial fiber algorithm was adopted to generate the myofiber directions[4].The active contraction(i.e.,systolic contraction)was modeled by the time varying'Elastance'active contraction model.The contractile parameter Tmax was determined and calibrated so that the FE predicted ejection fraction(EF)of TM matched the EF of a normal human heart at the specified end-systolic pressure[3].The analysis of the TM,PM,and SM models were implemented using the open-source finite element package FEBio(www.febio.org).In all models,the rigid body motion was suppressed by constraining the base from moving in all directions.The end-diastolic and end-systolic pressure-volume relationships(EDPVR and ESPVR)were obtained and characterized by an exponential function and the slope,respectively.Results Our simulation results showed that independent of the material model,the EDPVR curve shifts to the right in PM and SM compared to TM.However,the ESPVR curve may shift to the right or left in PM compared to TM,while shifting tothe right in SM for all material models.EDPVR was steeper in TM compared to PM and SM;however,ESPVR was found to be steeper in PM than in TM and SM.The predicted parameters of EDPVR and ESPVR showed lower average exponential term in PM and SM compared to TM,indicating a significant improvement in the compliance and global diastolic function of less trabeculated LV models(P<0.01).Similarly,the higher average elastance EEs and lower volume intersect in PM compared to TM,suggests that mild cutting of trabeculae carneae slightly improves the global systolic function of the LV(P=0.89).However,cutting all trabeculae carneae and papillary muscles in SM had a significant adverse effect on the global systolic function(P<0.01).Discussion and conclusions Most patient-specific LV studies in the literature have used smoothed ventricular geometries.We used high resolution MRI to capture the endocardial details of the LV.Though reproducing very fine trabeculae carneae was restricted by the MRI resolution,our results demonstrated the importance of considering endocardial structures,i.e.papillary muscles and trabeculae carneae,in the assessment of LV global function in patient-specific computational LV models.The present work is consistent with the observation that diastolic performance improved after severing trabeculae carneae due to a reduction in LV stiffness[2].Furthermore,our results also suggest that severing trabeculae carneae(without affecting papillary muscle)may improve LV systolic function.Our model results are consistent with experimental measurements using ex vivo rabbit heart perfusion[5].This improvement would be greater in hypertrophic hearts because trabeculae carneae are also hypertrophic and more fibrotic.Left ventricular hypertrophy is often associated with heart failure with preserved ejection fraction(HFpEF).There is no effective treatment for HFpEF,which is characterized by impaired diastolic relaxation due to increased LV stiffness.Our results indicate that trabecular cutting could be an effective treatment for HFpEF.
基金supported in part by a Jiangsu Province Science and Technology Agency grant ( BE2016785)
文摘Background Current bottleneck of patient-specific coronary plaque model construction is the resolution of in vivo medical imaging.The threshold of cap thickness of vulnerable coronary plaques is 65 microns,while the resolution of in vivo coronary intravascular ultrasound(IVUS)images is 150-200 microns,which is not enough to identify vulnerable plaques with thin caps and construct accurate biomechanical plaque models.Optical coherence tomography(OCT)with a 15-20μm resolution has the capacity to identify thin fibrous cap.IVUS and OCT images could complement each other and provide for more accurate plaque morphology,especially,fibrous cap thickness measurements.A modeling approach combining IVUS and OCT was introduced in our previous publication for cap thickness quantification and more accurate cap stress/strain calculations.In this paper,patient baseline and follow-up IVUS and OCT data were acquired and multimodality image-based Fluidstructure interaction(FSI)models combining 3D IVUS,OCT,angiography were constructed to better quantify human coronary atherosclerotic plaque morphology and plaque stress/strain conditions and investigate the relationship of plaque vulnerability and morphological and mechanical factors.Methods Baseline and 10-Month follow-up in vivo IVUS and OCT coronary plaque data were acquired from one patient with informed consent obtained.Co-registration and segmentation of baseline and follow-up IVUS and OCT images were performed for modeling use.Baseline and follow-up 3D FSI models based on IVUS and OCT were constructed to simulate the mechanical factors which integrating plaque morphology were employed to predict plaque vulnerability.These 3D models were solved by ADINA(ADINA R&D,Watertown,MA,USA).The quantitative indices of cap thickness,lipid percentage were classified according to histological literatures and denoted as Cap Index and Lipid Index.Cap Index,Lipid Index and Morphological Plaque Vulnerability Index(MPVI)were chosen to quantify plaque vulnerability,respectively.Random forest(RF)which was based 13 extracted features including morphological and mechanical factors was used for plaque vulnerability classification and prediction.Over sampling scheme and a 5-fold crossvalidation procedure was employed in all 45 slices for training and testing sets.Single and all different combinations of morphological and mechanical risk factors were used for plaque progression prediction.Results When Cap Index was used as the measurement,minimum cap thickness(MCT)was the best single predictor which area under curve(AUC)is 0.782 0;the combination of MCT,critical plaque wall strain(CPWSn),critical wall shear stress(CWSS)and cap wall shear stress(CapWSS)was the best predictor with ACU=0.868 6.When Lipid Index was used as the measurement,the lipid percentage(LP)was the best single predictor which AUC value is 0.857 8;the combination of Mean cap thickness(MeanCT),LP,CWSS and cap plaque wall stress(CapPWS)and was the best predictor with ACU=0.9821.When MPVI was used as the measurement,MCT was the best single predictor which AUC value is 0.782 9;the combination of MCT,LP,plaque area(PA),CPWSn and CapWSS was the best predictor with ACU=0.872 9.Conclusions Combinations of morphological and mechanical risk factors had higher prediction accuracy,compared to the prediction of single factors and other combination of morphological factors.