Narrow backfill earth pressure estimation is applied to study the stability of supporting structures in the vicinity of existing buildings.Previous narrow backfill earth pressure studies have neglected seismic-unsatur...Narrow backfill earth pressure estimation is applied to study the stability of supporting structures in the vicinity of existing buildings.Previous narrow backfill earth pressure studies have neglected seismic-unsaturated seepage multi-field coupling,resulting in inaccurate estimates.To address these deficiencies,this paper proposed a calculation method for seismic passive earth pressure in unsaturated narrow backfill,based on inclined thin-layer units.It considers the interlayer shear stress,arching effect,and the multi-field coupling of seismic-unsaturated seepage.Additionally,this paper includes a parametric sensitivity analysis.The outcomes indicate that the earthquake passive ground pressure of unsaturated narrow backfill can be reduced by increasing the aspect ratio,seismic acceleration coefficient,and unsaturation parameterα.It can also be reduced by decreasing the effective interior friction angle,soil cohesion,wallearth friction angle,and vertical discharge.Furthermore,for any width soil,lowering the elevation of the action point of passive thrust can be attained by raising the effective interior friction angle,wall-earth friction angle,and unsaturation parameterα.Reducing soil cohesion,seismic acceleration coefficient,and vertical discharge can also lower the height of the application point of passive thrust.展开更多
Modern conflicts demand substantial physical and psychological exertion,often resulting in fatigue and diminished combat or operational readiness.Several exoskeletons have been developed recently to address these chal...Modern conflicts demand substantial physical and psychological exertion,often resulting in fatigue and diminished combat or operational readiness.Several exoskeletons have been developed recently to address these challenges,presenting various limitations that affect their operational or everyday usability.This article evaluates the performance of a dual-purpose passive ankle exoskeleton developed for the reduction of metabolic costs during walking,seeking to identify a force element that could be applied to the target population.Based on the 6-min walk test,twenty-nine subjects participated in the study using three different force elements.The results indicate that it is possible to reduce metabolic expenditure while using the developed exoskeleton.Additionally,the comfort and range of motion results verify the exoskeleton's suitability for use in uneven terrain and during extended periods.Nevertheless,the choice of the force element should be tailored to each user,and the control system should be adjustable to optimise the exoskeleton's performance.展开更多
In this paper,we study the accuracy of delay-Doppler parameter estimation of targets in a passive radar using orthogonal frequency division multiplexing(OFDM)signal.A coarse-fine joint estimation method is proposed to...In this paper,we study the accuracy of delay-Doppler parameter estimation of targets in a passive radar using orthogonal frequency division multiplexing(OFDM)signal.A coarse-fine joint estimation method is proposed to achieve better estimation accuracy of target parameters without excessive computational burden.Firstly,the modulation symbol domain(MSD)method is used to roughly estimate the delay and Doppler of targets.Then,to obtain high-precision Doppler estimation,the atomic norm(AN)based on the multiple measurement vectors(MMV)model(MMV-AN)is used to manifest the signal sparsity in the continuous Doppler domain.At the same time,a reference signal compensation(RSC)method is presented to obtain highprecision delay estimation.Simulation results based on the OFDM signal show that the coarse-fine joint estimation method based on AN-RSC can obtain a more accurate estimation of target parameters compared with other algorithms.In addition,the proposed method also possesses computational advantages compared with the joint parameter estimation.展开更多
Most existing studies about passive radar systems are based on the already known illuminator of opportunity(IO)states.However,in practice,the receiver generally has little knowledge about the IO states.Little research...Most existing studies about passive radar systems are based on the already known illuminator of opportunity(IO)states.However,in practice,the receiver generally has little knowledge about the IO states.Little research has studied this problem.This paper analyzes the observability and estimability for passive radar systems with unknown IO states under three typical scenarios.Besides,the directions of high and low estimability with respect to various states are given.Moreover,two types of observations are taken into account.The effects of different observations on both observability and estimability are well analyzed.For the observability test,linear and nonlinear methods are considered,which proves that both tests are applicable to the system.Numerical simulations confirm the correctness of the theoretical analysis.展开更多
Single passive sensor tracking algorithms have four disadvantages: bad stability, longdynamic time, big bias and sensitive to initial conditions. So the corresponding fusion algorithm results in bad performance. A new...Single passive sensor tracking algorithms have four disadvantages: bad stability, longdynamic time, big bias and sensitive to initial conditions. So the corresponding fusion algorithm results in bad performance. A new error analysis method for two passive sensor tracking system is presented and the error equations are deduced in detail. Based on the equations, we carry out theoretical computation and Monte Carlo computer simulation. The results show the correctness of our error computation equations. With the error equations, we present multiple 'two station'fusion algorithm using adaptive pseudo measurement equations. This greatly enhances the tracking performance and makes the algorithm convergent very fast and not sensitive to initial conditions.Simulation results prove the correctness of our new algorithm.展开更多
Mining operation, especially underground coal mining, always has the remarkable risks of ground control. Passive seismic velocity tomography based on simultaneous iterative reconstructive technique (SIRT) inversion ...Mining operation, especially underground coal mining, always has the remarkable risks of ground control. Passive seismic velocity tomography based on simultaneous iterative reconstructive technique (SIRT) inversion is used to deduce the stress redistribution around the longwall mining panel. The mining-induced microseismic events were recorded by mounting an array of receivers on the surface, above the active panel. After processing and filtering the seismic data, the three-dimensional tomography images of the p-wave velocity variations by SIRT passive seismic velocity tomography were provided. To display the velocity changes on coal seam level and subsequently to infer the stress redistribution, these three-dimensional tomograms into the coal seam level were sliced. In addition, the boundary element method (BEM) was used to simulate the stress redistribution. The results show that the inferred stresses from the passive seismic tomograms are conformed to numerical models and theoretical concept of the stress redistribution around the longwall panel. In velocity tomograms, the main zones of the stress redistribution arotmd the panel, including front and side abutment pressures, and gob stress are obvious and also the movement of stress zones along the face advancement is evident. Moreover, the effect of the advance rate of the face on the stress redistribution is demonstrated in tomography images. The research result proves that the SIRT passive seismic velocity tomography has an ultimate potential for monitoring the changes of stress redistribution around the longwall mining panel continuously and subsequently to improve safety of mining operations.展开更多
Recently, the code division multiple access (CDMA) waveform exists in the large area across the world. However, when using the CDMA system as the illuminator of opportunity for the passive bistatic radar (PBR), th...Recently, the code division multiple access (CDMA) waveform exists in the large area across the world. However, when using the CDMA system as the illuminator of opportunity for the passive bistatic radar (PBR), there exists interference not only from the base station used as the illuminator of opportunity but also from other base stations with the same frequency. And be cause in the CDMA system, the signal transmitted by each base station is different, using the direct signal of one base station can not cancel the interference from other base stations. A CDMA based PBR using an element linear array antenna as both the reference antenna and surveillance antenna is introduced. To deal with the interference in this PBR system, an adaptive temporal cancellation algorithm is used to remove the interference from the base station used as the illuminator of opportunity firstly. And then a robust adaptive beamformer is used to suppress the interference from other base stations. Finally, the preliminary experiment re sults demonstrate the feasibility of using CDMA signals as a radar waveform.展开更多
Time delay and Doppler shift between the echo signal and the reference signal are two most commonly used measurements in target localization for the passive radar. Doppler rate, which can be obtained from the extended...Time delay and Doppler shift between the echo signal and the reference signal are two most commonly used measurements in target localization for the passive radar. Doppler rate, which can be obtained from the extended cross ambiguity function, offers an opportunity to further enhance the localization accuracy. This paper considers using the measurement Doppler rate in addition to measurements of time delay and Doppler shift to locate a moving target. A closed-form solution is developed to accurately and efficiently estimate the target position and velocity.The proposed solution establishes a pseudolinear set of equations by introducing some additional variables, imposes weighted least squares formulation to yield a rough estimate, and utilizes the function relation among the target location parameters and additional variables to improve the estimation accuracy. Theoretical covariance and Cramer-Rao lower bound(CRLB) are derived and compared, analytically indicating that the proposed solution attains the CRLB. Numerical simulations corroborate this analysis and demonstrate that the proposed solution outperforms existing methods.展开更多
A blind digital image forensic method for detecting copy-paste forgery between JPEG images was proposed.Two copy-paste tampering scenarios were introduced at first:the tampered image was saved in an uncompressed forma...A blind digital image forensic method for detecting copy-paste forgery between JPEG images was proposed.Two copy-paste tampering scenarios were introduced at first:the tampered image was saved in an uncompressed format or in a JPEG compressed format.Then the proposed detection method was analyzed and simulated for all the cases of the two tampering scenarios.The tampered region is detected by computing the averaged sum of absolute difference(ASAD) images between the examined image and a resaved JPEG compressed image at different quality factors.The experimental results show the advantages of the proposed method:capability of detecting small and/or multiple tampered regions,simple computation,and hence fast speed in processing.展开更多
The problem of passive detection discussed in this paper involves searching and locating an aerial emitter by dualaircraft using passive radars. In order to improve the detection probability and accuracy, a fuzzy Q le...The problem of passive detection discussed in this paper involves searching and locating an aerial emitter by dualaircraft using passive radars. In order to improve the detection probability and accuracy, a fuzzy Q learning algorithrn for dual-aircraft flight path planning is proposed. The passive detection task model of the dual-aircraft is set up based on the partition of the target active radar's radiation area. The problem is formulated as a Markov decision process (MDP) by using the fuzzy theory to make a generalization of the state space and defining the transition functions, action space and reward function properly. Details of the path planning algorithm are presented. Simulation results indicate that the algorithm can provide adaptive strategies for dual-aircraft to control their flight paths to detect a non-maneuvering or maneu- vering target.展开更多
The interaction between pile and soft soil of the passive pile group subjected to soil movement was analyzed with three-dimensional finite element model by using ANSYS software. The soil was assumed to be elastic-plas...The interaction between pile and soft soil of the passive pile group subjected to soil movement was analyzed with three-dimensional finite element model by using ANSYS software. The soil was assumed to be elastic-plastic complying with the Drucker-Prager yield criterion in the analysis. The large displacement of soil was considered and contact elements were used to evaluate the interaction between pile and soil. The influences of soil depth of layer and number of piles on the lateral pressure of the pile were investigated, and the lateral pressure distributions on the (2×1) pile group and on the (2×2) pile group were compared. The results show that the adjacent surcharge may result in significant lateral movement of the soft soil and considerable pressure on the pile. The pressure acting on the row near the surcharge is higher than that on the other row, due to the "barrier" and arching effects in pile groups. The passive load and its distribution should be taken into account in the design of the passive piles.展开更多
In the tracking problem for the maritime radiation source by a passive sensor,there are three main difficulties,i.e.,the poor observability of the radiation source,the detection uncertainty(false and missed detections...In the tracking problem for the maritime radiation source by a passive sensor,there are three main difficulties,i.e.,the poor observability of the radiation source,the detection uncertainty(false and missed detections)and the uncertainty of the target appearing/disappearing in the field of view.These difficulties can make the establishment or maintenance of the radiation source target track invalid.By incorporating the elevation information of the passive sensor into the automatic bearings-only tracking(BOT)and consolidating these uncertainties under the framework of random finite set(RFS),a novel approach for tracking maritime radiation source target with intermittent measurement was proposed.Under the RFS framework,the target state was represented as a set that can take on either an empty set or a singleton; meanwhile,the measurement uncertainty was modeled as a Bernoulli random finite set.Moreover,the elevation information of the sensor platform was introduced to ensure observability of passive measurements and obtain the unique target localization.Simulation experiments verify the validity of the proposed approach for tracking maritime radiation source and demonstrate the superiority of the proposed approach in comparison with the traditional integrated probabilistic data association(IPDA)method.The tracking performance under different conditions,particularly involving different existence probabilities and different appearance durations of the target,indicates that the method to solve our problem is robust and effective.展开更多
Owing to the advantages in detecting the low altitude and stealth target,passive bistatic radar(PBR)has received much attention in surveillance purposes.Due to the uncontrollable characteristic of the transmitted sign...Owing to the advantages in detecting the low altitude and stealth target,passive bistatic radar(PBR)has received much attention in surveillance purposes.Due to the uncontrollable characteristic of the transmitted signal,a high level range or Doppler sidelobes may exist in the ambiguity function which will degrade the target detection performance.Mismatched filtering is a common method to deal with the ambiguity sidelobe problem.However,when mismatched filtering is applied,sidelobes cannot be eliminated completely.The residual sidelobes will cause false-alarm when the constant false alarm ratio(CFAR)is applied.To deal with this problem,a new target detection method based on preprocessing is proposed.In this new method,the ambiguity range and Doppler sidelobes are recognized and eliminated by the preprocessing method according to the prior information.CFAR is also employed to obtain the information of the target echo.Simulation results and results on real data illustrate the effectiveness of the proposed method.展开更多
Using super resolution direction of arrival(DOA) estimation algorithm to reduce the resolution angle is an effective method for passive radar seeker(PRS) to antagonize non-coherent radar decoy.Considering the powe...Using super resolution direction of arrival(DOA) estimation algorithm to reduce the resolution angle is an effective method for passive radar seeker(PRS) to antagonize non-coherent radar decoy.Considering the power and correlation property between radar and non-coherent decoy,an improved subspace DOA estimation method based on traditional subspace algorithm is proposed.Because this new method uses the invariance property of noise subspace,compared with traditional MUSIC algorithm,it shows not only better resolution in condition of closely spaced sources,but also superior performance in case of different power or partially correlated sources.Using this new method,PRS can distinguish radar and non-coherent decoy with good performance.Both the simulation result and the experimental data confirm the performance of the method.展开更多
The exponential passive filtering problem for a class of nonlinear Markov jump systems with uncertainties and time-delays is studied. The uncertain parameters are assumed unknown but norm bounded, and the nonlineariti...The exponential passive filtering problem for a class of nonlinear Markov jump systems with uncertainties and time-delays is studied. The uncertain parameters are assumed unknown but norm bounded, and the nonlinearities satisfy the quadratic condition. Based on the passive filtering theory, the sufficient condition for the existence of the mode-dependent passive filter is given by analyzing the reconstructed observer system. By using the appropriate Lyapnnov-Krasovskii function and applying linear matrix inequalities, the design scheme of the passive filter is derived and described as an optimization one. The presented exponential passive filter makes the error dynamic systems exponentially stochastically stable for all the admissible uncertainties, time-delays and nonlinearities, has the better abilities of state tracking and satisfies the given passive norm index. Simulation results demonstrate the validity of the proposed approach.展开更多
Radar cross section(RCS)is an important attribute of radar targets and has been widely used in automatic target recognition(ATR).In a passive radar,only the RCS multiplied by a coefficient is available due to the unkn...Radar cross section(RCS)is an important attribute of radar targets and has been widely used in automatic target recognition(ATR).In a passive radar,only the RCS multiplied by a coefficient is available due to the unknown transmitting parameters.For different transmitter-receiver(bistatic)pairs,the coefficients are different.Thus,the recovered RCS in different transmitter-receiver(bistatic)pairs cannot be fused for further use.In this paper,we propose a quantity named quasi-echo-power(QEP)as well as a method for eliminating differences of this quantity among different transmitter-receiver(bistatic)pairs.The QEP is defined as the target echo power after being compensated for distance and pattern propagation factor.The proposed method estimates the station difference coefficients(SDCs)of transmitter-receiver(bistatic)pairs relative to the reference transmitter-receiver(bistatic)pair first.Then,it compensates the QEP and gets the compensated QEP.The compensated QEP possesses a linear relationship with the target RCS.Statistical analyses on the simulated and real-life QEP data show that the proposed method can effectively estimate the SDC between different stations,and the compensated QEP from different receiving stations has the same distribution characteristics for the same target.展开更多
The performance-based passive control analysis of the Maxwell dampers between one 10-story and one 6-story adjacent RC frames is conducted in this work.Not only the optimal parameters but also the optimal arrangements...The performance-based passive control analysis of the Maxwell dampers between one 10-story and one 6-story adjacent RC frames is conducted in this work.Not only the optimal parameters but also the optimal arrangements of the Maxwell dampers are proposed based on the optimal target of making the total exceeding probability of the adjacent structures to be minimal.The applicability of the analytical expressions of the Maxwell damper damping parameters under different seismic performance targets are firstly examined and then the preferable damping parameters of the Maxwell dampers are proposed through the extensive parametric studies.Furthermore,the optimal arranging positions and optimal arranging numbers of the Maxwell dampers between the adjacent buildings are derived based on a large number of seismic fragility analyses,as well.The general arranging laws of the Maxwell dampers between the adjacent buildings are generated based on the discussion of the theoretical method through the simplified plane model.The optimal parameters and optimal arrangement of the Maxwell dampers presented make both the adjacent structures have preferable controlled effects under each seismic performance target which can satisfy the requirements of multi-performance seismic resistance of the modern seismic codes.展开更多
Passive house has been constructed in China on a large-scale over the past couple years for its great energy saving potential.However,research indicates that there is a significant discrepancy in energy performance fo...Passive house has been constructed in China on a large-scale over the past couple years for its great energy saving potential.However,research indicates that there is a significant discrepancy in energy performance for heating and cooling between passive houses in different climate zones.Therefore,this research develops a comparative analysis on the energy saving potential of passive houses with the conventional around China.A sensitivity analysis of thermal characteristics of building envelope(insulation of exterior walls and windows,and airtightness)on energy consumption is further carried out to improve the climate adaptability of passive house.Moreover,the variation of energy consumption under different heat gain intensity is also compared,to evaluate the effects of envelope thermal characteristics comprehensively.Results suggest that the decrease of exterior wall insulation leads to the greatest increase in energy consumption,especially in severe cold zone in China.However,the optimal insulation may change with the internal heat gain intensity,for instance,the decrease of insulation(from 0.4 to 1.0 W/(m^(2)·K))could reduce the energy consumption by 4.65 kW·h/(m^(2)·a)when the heat gain increases to 20 W/m^(2)for buildings in Hot Summer and Cold Winter zone in China.展开更多
Target detection by a noncooperative illuminator is a topic of general interest in the electronic warfare field. First of all, direct-path interference (DPI) suppression which is the technique of bottleneck of movin...Target detection by a noncooperative illuminator is a topic of general interest in the electronic warfare field. First of all, direct-path interference (DPI) suppression which is the technique of bottleneck of moving target detection by a noncooperative frequency modulation(FM) broadcast transmitter is analyzed in this article; Secondly, a space-time-frequency domain synthetic solution to this problem is introduced: Adaptive nulling array processing is considered in the space domain, DPI cancellation based on adaptive fractional delay interpolation (AFDI) technique is used in planned time domain, and long-time coherent integration is utilized in the frequency domain; Finaily, an experimental system is planned by considering FM broadcast transmitter as a noncooperative illuminator, Simulation results by real collected data show that the proposed method has a better performance of moving target detection.展开更多
基金Project(42277175)supported by the National Natural Science Foundation of ChinaProject(NRMSSHR-2022-Z08)supported by the Key Laboratory of Natural Resources Monitoring and Supervision in Southern Hilly Region,Ministry of Natural Resources,China。
文摘Narrow backfill earth pressure estimation is applied to study the stability of supporting structures in the vicinity of existing buildings.Previous narrow backfill earth pressure studies have neglected seismic-unsaturated seepage multi-field coupling,resulting in inaccurate estimates.To address these deficiencies,this paper proposed a calculation method for seismic passive earth pressure in unsaturated narrow backfill,based on inclined thin-layer units.It considers the interlayer shear stress,arching effect,and the multi-field coupling of seismic-unsaturated seepage.Additionally,this paper includes a parametric sensitivity analysis.The outcomes indicate that the earthquake passive ground pressure of unsaturated narrow backfill can be reduced by increasing the aspect ratio,seismic acceleration coefficient,and unsaturation parameterα.It can also be reduced by decreasing the effective interior friction angle,soil cohesion,wallearth friction angle,and vertical discharge.Furthermore,for any width soil,lowering the elevation of the action point of passive thrust can be attained by raising the effective interior friction angle,wall-earth friction angle,and unsaturation parameterα.Reducing soil cohesion,seismic acceleration coefficient,and vertical discharge can also lower the height of the application point of passive thrust.
基金the Portuguese Army,through CINAMIL,within project ELITE2-Enhancement LITe ExoskeletonFoundation for Science and Technology (FCT),through IDMEC,under LAETA,project UIDB/50022/2020 for supporting this research。
文摘Modern conflicts demand substantial physical and psychological exertion,often resulting in fatigue and diminished combat or operational readiness.Several exoskeletons have been developed recently to address these challenges,presenting various limitations that affect their operational or everyday usability.This article evaluates the performance of a dual-purpose passive ankle exoskeleton developed for the reduction of metabolic costs during walking,seeking to identify a force element that could be applied to the target population.Based on the 6-min walk test,twenty-nine subjects participated in the study using three different force elements.The results indicate that it is possible to reduce metabolic expenditure while using the developed exoskeleton.Additionally,the comfort and range of motion results verify the exoskeleton's suitability for use in uneven terrain and during extended periods.Nevertheless,the choice of the force element should be tailored to each user,and the control system should be adjustable to optimise the exoskeleton's performance.
基金supported by the National Natural Science Foundation of China(6193101562071335)+1 种基金the Technological Innovation Project of Hubei Province of China(2019AAA061)the Natural Science F oundation of Hubei Province of China(2021CFA002)。
文摘In this paper,we study the accuracy of delay-Doppler parameter estimation of targets in a passive radar using orthogonal frequency division multiplexing(OFDM)signal.A coarse-fine joint estimation method is proposed to achieve better estimation accuracy of target parameters without excessive computational burden.Firstly,the modulation symbol domain(MSD)method is used to roughly estimate the delay and Doppler of targets.Then,to obtain high-precision Doppler estimation,the atomic norm(AN)based on the multiple measurement vectors(MMV)model(MMV-AN)is used to manifest the signal sparsity in the continuous Doppler domain.At the same time,a reference signal compensation(RSC)method is presented to obtain highprecision delay estimation.Simulation results based on the OFDM signal show that the coarse-fine joint estimation method based on AN-RSC can obtain a more accurate estimation of target parameters compared with other algorithms.In addition,the proposed method also possesses computational advantages compared with the joint parameter estimation.
基金This work was supported by the National Natural Science Foundation of China(61803379)the China Postdoctoral Science Foundation(2017M613370,2018T111129).
文摘Most existing studies about passive radar systems are based on the already known illuminator of opportunity(IO)states.However,in practice,the receiver generally has little knowledge about the IO states.Little research has studied this problem.This paper analyzes the observability and estimability for passive radar systems with unknown IO states under three typical scenarios.Besides,the directions of high and low estimability with respect to various states are given.Moreover,two types of observations are taken into account.The effects of different observations on both observability and estimability are well analyzed.For the observability test,linear and nonlinear methods are considered,which proves that both tests are applicable to the system.Numerical simulations confirm the correctness of the theoretical analysis.
文摘Single passive sensor tracking algorithms have four disadvantages: bad stability, longdynamic time, big bias and sensitive to initial conditions. So the corresponding fusion algorithm results in bad performance. A new error analysis method for two passive sensor tracking system is presented and the error equations are deduced in detail. Based on the equations, we carry out theoretical computation and Monte Carlo computer simulation. The results show the correctness of our error computation equations. With the error equations, we present multiple 'two station'fusion algorithm using adaptive pseudo measurement equations. This greatly enhances the tracking performance and makes the algorithm convergent very fast and not sensitive to initial conditions.Simulation results prove the correctness of our new algorithm.
文摘Mining operation, especially underground coal mining, always has the remarkable risks of ground control. Passive seismic velocity tomography based on simultaneous iterative reconstructive technique (SIRT) inversion is used to deduce the stress redistribution around the longwall mining panel. The mining-induced microseismic events were recorded by mounting an array of receivers on the surface, above the active panel. After processing and filtering the seismic data, the three-dimensional tomography images of the p-wave velocity variations by SIRT passive seismic velocity tomography were provided. To display the velocity changes on coal seam level and subsequently to infer the stress redistribution, these three-dimensional tomograms into the coal seam level were sliced. In addition, the boundary element method (BEM) was used to simulate the stress redistribution. The results show that the inferred stresses from the passive seismic tomograms are conformed to numerical models and theoretical concept of the stress redistribution around the longwall panel. In velocity tomograms, the main zones of the stress redistribution arotmd the panel, including front and side abutment pressures, and gob stress are obvious and also the movement of stress zones along the face advancement is evident. Moreover, the effect of the advance rate of the face on the stress redistribution is demonstrated in tomography images. The research result proves that the SIRT passive seismic velocity tomography has an ultimate potential for monitoring the changes of stress redistribution around the longwall mining panel continuously and subsequently to improve safety of mining operations.
基金supported by the National Advanced Research Foundation of China (2010AAJ144)
文摘Recently, the code division multiple access (CDMA) waveform exists in the large area across the world. However, when using the CDMA system as the illuminator of opportunity for the passive bistatic radar (PBR), there exists interference not only from the base station used as the illuminator of opportunity but also from other base stations with the same frequency. And be cause in the CDMA system, the signal transmitted by each base station is different, using the direct signal of one base station can not cancel the interference from other base stations. A CDMA based PBR using an element linear array antenna as both the reference antenna and surveillance antenna is introduced. To deal with the interference in this PBR system, an adaptive temporal cancellation algorithm is used to remove the interference from the base station used as the illuminator of opportunity firstly. And then a robust adaptive beamformer is used to suppress the interference from other base stations. Finally, the preliminary experiment re sults demonstrate the feasibility of using CDMA signals as a radar waveform.
基金supported by the National Natural Science Foundation of China (61703433)。
文摘Time delay and Doppler shift between the echo signal and the reference signal are two most commonly used measurements in target localization for the passive radar. Doppler rate, which can be obtained from the extended cross ambiguity function, offers an opportunity to further enhance the localization accuracy. This paper considers using the measurement Doppler rate in addition to measurements of time delay and Doppler shift to locate a moving target. A closed-form solution is developed to accurately and efficiently estimate the target position and velocity.The proposed solution establishes a pseudolinear set of equations by introducing some additional variables, imposes weighted least squares formulation to yield a rough estimate, and utilizes the function relation among the target location parameters and additional variables to improve the estimation accuracy. Theoretical covariance and Cramer-Rao lower bound(CRLB) are derived and compared, analytically indicating that the proposed solution attains the CRLB. Numerical simulations corroborate this analysis and demonstrate that the proposed solution outperforms existing methods.
基金Project(61172184) supported by the National Natural Science Foundation of ChinaProject(200902482) supported by China Postdoctoral Science Foundation Specially Funded ProjectProject(12JJ6062) supported by the Natural Science Foundation of Hunan Province,China
文摘A blind digital image forensic method for detecting copy-paste forgery between JPEG images was proposed.Two copy-paste tampering scenarios were introduced at first:the tampered image was saved in an uncompressed format or in a JPEG compressed format.Then the proposed detection method was analyzed and simulated for all the cases of the two tampering scenarios.The tampered region is detected by computing the averaged sum of absolute difference(ASAD) images between the examined image and a resaved JPEG compressed image at different quality factors.The experimental results show the advantages of the proposed method:capability of detecting small and/or multiple tampered regions,simple computation,and hence fast speed in processing.
基金supported by the National Natural Science Foundation of China(60874040)
文摘The problem of passive detection discussed in this paper involves searching and locating an aerial emitter by dualaircraft using passive radars. In order to improve the detection probability and accuracy, a fuzzy Q learning algorithrn for dual-aircraft flight path planning is proposed. The passive detection task model of the dual-aircraft is set up based on the partition of the target active radar's radiation area. The problem is formulated as a Markov decision process (MDP) by using the fuzzy theory to make a generalization of the state space and defining the transition functions, action space and reward function properly. Details of the path planning algorithm are presented. Simulation results indicate that the algorithm can provide adaptive strategies for dual-aircraft to control their flight paths to detect a non-maneuvering or maneu- vering target.
基金Project(50378036) supported by the National Natural Science Foundation of China
文摘The interaction between pile and soft soil of the passive pile group subjected to soil movement was analyzed with three-dimensional finite element model by using ANSYS software. The soil was assumed to be elastic-plastic complying with the Drucker-Prager yield criterion in the analysis. The large displacement of soil was considered and contact elements were used to evaluate the interaction between pile and soil. The influences of soil depth of layer and number of piles on the lateral pressure of the pile were investigated, and the lateral pressure distributions on the (2×1) pile group and on the (2×2) pile group were compared. The results show that the adjacent surcharge may result in significant lateral movement of the soft soil and considerable pressure on the pile. The pressure acting on the row near the surcharge is higher than that on the other row, due to the "barrier" and arching effects in pile groups. The passive load and its distribution should be taken into account in the design of the passive piles.
基金Project(61101186)supported by the National Natural Science Foundation of China
文摘In the tracking problem for the maritime radiation source by a passive sensor,there are three main difficulties,i.e.,the poor observability of the radiation source,the detection uncertainty(false and missed detections)and the uncertainty of the target appearing/disappearing in the field of view.These difficulties can make the establishment or maintenance of the radiation source target track invalid.By incorporating the elevation information of the passive sensor into the automatic bearings-only tracking(BOT)and consolidating these uncertainties under the framework of random finite set(RFS),a novel approach for tracking maritime radiation source target with intermittent measurement was proposed.Under the RFS framework,the target state was represented as a set that can take on either an empty set or a singleton; meanwhile,the measurement uncertainty was modeled as a Bernoulli random finite set.Moreover,the elevation information of the sensor platform was introduced to ensure observability of passive measurements and obtain the unique target localization.Simulation experiments verify the validity of the proposed approach for tracking maritime radiation source and demonstrate the superiority of the proposed approach in comparison with the traditional integrated probabilistic data association(IPDA)method.The tracking performance under different conditions,particularly involving different existence probabilities and different appearance durations of the target,indicates that the method to solve our problem is robust and effective.
基金the National Natural Science Foundation of China(61401526).
文摘Owing to the advantages in detecting the low altitude and stealth target,passive bistatic radar(PBR)has received much attention in surveillance purposes.Due to the uncontrollable characteristic of the transmitted signal,a high level range or Doppler sidelobes may exist in the ambiguity function which will degrade the target detection performance.Mismatched filtering is a common method to deal with the ambiguity sidelobe problem.However,when mismatched filtering is applied,sidelobes cannot be eliminated completely.The residual sidelobes will cause false-alarm when the constant false alarm ratio(CFAR)is applied.To deal with this problem,a new target detection method based on preprocessing is proposed.In this new method,the ambiguity range and Doppler sidelobes are recognized and eliminated by the preprocessing method according to the prior information.CFAR is also employed to obtain the information of the target echo.Simulation results and results on real data illustrate the effectiveness of the proposed method.
文摘Using super resolution direction of arrival(DOA) estimation algorithm to reduce the resolution angle is an effective method for passive radar seeker(PRS) to antagonize non-coherent radar decoy.Considering the power and correlation property between radar and non-coherent decoy,an improved subspace DOA estimation method based on traditional subspace algorithm is proposed.Because this new method uses the invariance property of noise subspace,compared with traditional MUSIC algorithm,it shows not only better resolution in condition of closely spaced sources,but also superior performance in case of different power or partially correlated sources.Using this new method,PRS can distinguish radar and non-coherent decoy with good performance.Both the simulation result and the experimental data confirm the performance of the method.
基金supported partly by the National Natural Science Foundation of China(60574001)the Program for New Century Excellent Talents in University(050485)the Program for Innovative Research Team of Jiangnan University.
文摘The exponential passive filtering problem for a class of nonlinear Markov jump systems with uncertainties and time-delays is studied. The uncertain parameters are assumed unknown but norm bounded, and the nonlinearities satisfy the quadratic condition. Based on the passive filtering theory, the sufficient condition for the existence of the mode-dependent passive filter is given by analyzing the reconstructed observer system. By using the appropriate Lyapnnov-Krasovskii function and applying linear matrix inequalities, the design scheme of the passive filter is derived and described as an optimization one. The presented exponential passive filter makes the error dynamic systems exponentially stochastically stable for all the admissible uncertainties, time-delays and nonlinearities, has the better abilities of state tracking and satisfies the given passive norm index. Simulation results demonstrate the validity of the proposed approach.
基金supported by the National Natural Science Foundation of China(61931015,62071335)the Science and Technology Program of Shenzhen(JCYJ20170818112037398)the Technological Innovation Project of Hubei Province of China(2019AAA061).
文摘Radar cross section(RCS)is an important attribute of radar targets and has been widely used in automatic target recognition(ATR).In a passive radar,only the RCS multiplied by a coefficient is available due to the unknown transmitting parameters.For different transmitter-receiver(bistatic)pairs,the coefficients are different.Thus,the recovered RCS in different transmitter-receiver(bistatic)pairs cannot be fused for further use.In this paper,we propose a quantity named quasi-echo-power(QEP)as well as a method for eliminating differences of this quantity among different transmitter-receiver(bistatic)pairs.The QEP is defined as the target echo power after being compensated for distance and pattern propagation factor.The proposed method estimates the station difference coefficients(SDCs)of transmitter-receiver(bistatic)pairs relative to the reference transmitter-receiver(bistatic)pair first.Then,it compensates the QEP and gets the compensated QEP.The compensated QEP possesses a linear relationship with the target RCS.Statistical analyses on the simulated and real-life QEP data show that the proposed method can effectively estimate the SDC between different stations,and the compensated QEP from different receiving stations has the same distribution characteristics for the same target.
基金Projects(51408443,51178203)supported by the National Natural Science Foundation of ChinaProject(K201511)supported by the Science Foundation of Wuhan Institute of Technology,China
文摘The performance-based passive control analysis of the Maxwell dampers between one 10-story and one 6-story adjacent RC frames is conducted in this work.Not only the optimal parameters but also the optimal arrangements of the Maxwell dampers are proposed based on the optimal target of making the total exceeding probability of the adjacent structures to be minimal.The applicability of the analytical expressions of the Maxwell damper damping parameters under different seismic performance targets are firstly examined and then the preferable damping parameters of the Maxwell dampers are proposed through the extensive parametric studies.Furthermore,the optimal arranging positions and optimal arranging numbers of the Maxwell dampers between the adjacent buildings are derived based on a large number of seismic fragility analyses,as well.The general arranging laws of the Maxwell dampers between the adjacent buildings are generated based on the discussion of the theoretical method through the simplified plane model.The optimal parameters and optimal arrangement of the Maxwell dampers presented make both the adjacent structures have preferable controlled effects under each seismic performance target which can satisfy the requirements of multi-performance seismic resistance of the modern seismic codes.
基金Project(51825802)supported by the National Science Foundation for Distinguished Young Scholars of ChinaProject(2018YFE0106100)supported by the National Key R&D Program of China。
文摘Passive house has been constructed in China on a large-scale over the past couple years for its great energy saving potential.However,research indicates that there is a significant discrepancy in energy performance for heating and cooling between passive houses in different climate zones.Therefore,this research develops a comparative analysis on the energy saving potential of passive houses with the conventional around China.A sensitivity analysis of thermal characteristics of building envelope(insulation of exterior walls and windows,and airtightness)on energy consumption is further carried out to improve the climate adaptability of passive house.Moreover,the variation of energy consumption under different heat gain intensity is also compared,to evaluate the effects of envelope thermal characteristics comprehensively.Results suggest that the decrease of exterior wall insulation leads to the greatest increase in energy consumption,especially in severe cold zone in China.However,the optimal insulation may change with the internal heat gain intensity,for instance,the decrease of insulation(from 0.4 to 1.0 W/(m^(2)·K))could reduce the energy consumption by 4.65 kW·h/(m^(2)·a)when the heat gain increases to 20 W/m^(2)for buildings in Hot Summer and Cold Winter zone in China.
文摘Target detection by a noncooperative illuminator is a topic of general interest in the electronic warfare field. First of all, direct-path interference (DPI) suppression which is the technique of bottleneck of moving target detection by a noncooperative frequency modulation(FM) broadcast transmitter is analyzed in this article; Secondly, a space-time-frequency domain synthetic solution to this problem is introduced: Adaptive nulling array processing is considered in the space domain, DPI cancellation based on adaptive fractional delay interpolation (AFDI) technique is used in planned time domain, and long-time coherent integration is utilized in the frequency domain; Finaily, an experimental system is planned by considering FM broadcast transmitter as a noncooperative illuminator, Simulation results by real collected data show that the proposed method has a better performance of moving target detection.