Effects of nickel component,thiourea,glue and chloride ions and their interactions on the passivation of copper–nickel based alloy scrap anodes were investigated by combining conventional electrochemical techniques.R...Effects of nickel component,thiourea,glue and chloride ions and their interactions on the passivation of copper–nickel based alloy scrap anodes were investigated by combining conventional electrochemical techniques.Results obtained from chronopotentiometry and linear voltammetry curves showed that the Ni component made electrochemical stability of the anode strong and difficult to be corroded,caused by the adsorption of generated Cu2O,NiO or copper powder to the anode surface.The Ni2+reducing Cu2+to Cu+or copper powder aggravated the anode passivation.In a certain range of the glue concentration≤8×10–6 or thiourea concentration≤4×10–6,the increase of glue or thiourea concentration increases the anode passivation time.Over this range,glue and thiourea played an adverse effect.The increase of chloride ions concentration led to the increase in passivation time.展开更多
Bioleaching and electrochemical experiments were conducted to evaluate pyrrhotite dissolution in the presence of pure L.ferriphilum and mixed culture of L. ferriphilum and A. caldus. The results indicate that the pyrr...Bioleaching and electrochemical experiments were conducted to evaluate pyrrhotite dissolution in the presence of pure L.ferriphilum and mixed culture of L. ferriphilum and A. caldus. The results indicate that the pyrrhotite oxidation behavior is the preferential dissolution of iron accompanied with the massive formation of sulfur in the presence of L. ferriphilum, which significantly hinders the leaching efficiency. Comparatively, the leaching rate of pyrrhotite distinctly increases by 68% in the mixed culture of L. ferriphilum and A. caldus at the 3rd day. But, the accumulated ferric ions and high p H value produced by bioleaching process can give rise to the rapid formation of jarosite, which is the primary passivation film blocking continuous iron extraction during bioleaching by the mixed culture. The addition of A. caldus during leaching by L. ferriphilum can accelerate the oxidation rate of pyrrhotite, but not change the electrochemical oxidation mechanisms of pyrrhotite. XRD and SEM/EDS analyses as well as electrochemical study confirm the above conclusions.展开更多
An attempt was made to build up a thick and compact oxide layer rapidly by pre-treating the Pb-Ag-Nd anode in fluoride-containing H2SO4 solution. The passivation reaction of Pb-Ag-Nd anode during pre-treatment process...An attempt was made to build up a thick and compact oxide layer rapidly by pre-treating the Pb-Ag-Nd anode in fluoride-containing H2SO4 solution. The passivation reaction of Pb-Ag-Nd anode during pre-treatment process was investigated using cyclic voltammetry, linear scanning voltammetry, environmental scanning electron microscopy and X-ray diffraction analysis. The results show that Pb F2 and PbSO4 are formed near the potential of Pb/PbSO4 couple. The pre-treatment in fluoride-containing H2SO4 solution contributes to the formation of a thick, compact and adherent passive film. Furthermore, pre-treatment in fluoride-containing H2SO4 solution also facilitates the formation of PbO2 on the anodic layer, and the reason could be attributed to the formation of more PbF2 and PbSO4 during the pre-treatment which tend to transform to PbO2 during the following electrowinning process. In addition, the anodic layer on anode with pre-treatment in fluoride-containing H2SO4 solution is thick and compact, and its predominant composition is β-PbO2. In summary, the pre-treatment in fluoride-containing H2SO4 solution benefits the formation of a desirable protective layer in a short time.展开更多
Iron(Fe)nanoparticles and graphite(Gr)with different masses of bismuth trisulfide(Bi_(2)S_(3))were mixed by high-energy ball milling treatment to fabricate the corresponding composite iron anodes Bi_(2)S_(3)@Fe-Gr.The...Iron(Fe)nanoparticles and graphite(Gr)with different masses of bismuth trisulfide(Bi_(2)S_(3))were mixed by high-energy ball milling treatment to fabricate the corresponding composite iron anodes Bi_(2)S_(3)@Fe-Gr.The hydrogen evolution reaction and iron passivation process on these iron electrodes were investigated in alkaline and neutral solutions.The iron electrode Bi_(2)S_(3)-3@Fe-Gr(The additional amount of Bi_(2)S_(3)was 3 mg)revealed the strongest ability to inhibit hydrogen evolution among the iron electrodes of the present investigation,while the Bi_(2)S_(3)-6@Fe-Gr electrode(The additional amount of Bi_(2)S_(3)was 6 mg)delivered significant performance in inhibiting anodic passivation.This is because the high-energy ball milling process leads to the well-dispersion of Bi_(2)S_(3)and the changes in the surface of Fe nanoparticles,thereby slowing down the passivation of the iron electrode surface.展开更多
Narrow backfill earth pressure estimation is applied to study the stability of supporting structures in the vicinity of existing buildings.Previous narrow backfill earth pressure studies have neglected seismic-unsatur...Narrow backfill earth pressure estimation is applied to study the stability of supporting structures in the vicinity of existing buildings.Previous narrow backfill earth pressure studies have neglected seismic-unsaturated seepage multi-field coupling,resulting in inaccurate estimates.To address these deficiencies,this paper proposed a calculation method for seismic passive earth pressure in unsaturated narrow backfill,based on inclined thin-layer units.It considers the interlayer shear stress,arching effect,and the multi-field coupling of seismic-unsaturated seepage.Additionally,this paper includes a parametric sensitivity analysis.The outcomes indicate that the earthquake passive ground pressure of unsaturated narrow backfill can be reduced by increasing the aspect ratio,seismic acceleration coefficient,and unsaturation parameterα.It can also be reduced by decreasing the effective interior friction angle,soil cohesion,wallearth friction angle,and vertical discharge.Furthermore,for any width soil,lowering the elevation of the action point of passive thrust can be attained by raising the effective interior friction angle,wall-earth friction angle,and unsaturation parameterα.Reducing soil cohesion,seismic acceleration coefficient,and vertical discharge can also lower the height of the application point of passive thrust.展开更多
Passive bionic feet,known for their human-like compliance,have garnered attention for their potential to achieve notable environmental adaptability.In this paper,a method was proposed to unifying passive bionic feet s...Passive bionic feet,known for their human-like compliance,have garnered attention for their potential to achieve notable environmental adaptability.In this paper,a method was proposed to unifying passive bionic feet static supporting stability and dynamic terrain adaptability through the utilization of the Rigid-Elastic Hybrid(REH)dynamics model.First,a bionic foot model,named the Hinge Tension Elastic Complex(HTEC)model,was developed by extracting key features from human feet.Furthermore,the kinematics and REH dynamics of the HTEC model were established.Based on the foot dynamics,a nonlinear optimization method for stiffness matching(NOSM)was designed.Finally,the HTEC-based foot was constructed and applied onto BHR-B2 humanoid robot.The foot static stability is achieved.The enhanced adaptability is observed as the robot traverses square steel,lawn,and cobblestone terrains.Through proposed design method and structure,the mobility of the humanoid robot is improved.展开更多
This paper is investigating the use of composite armour reinforced by nanomaterials, for the protection of light armoured(LAV) and medium armoured military vehicles(MAV), and the interaction between the composite mate...This paper is investigating the use of composite armour reinforced by nanomaterials, for the protection of light armoured(LAV) and medium armoured military vehicles(MAV), and the interaction between the composite materials and high-performance ballistic projectiles. Four armour materials, consisted of front hybrid fibre reinforced polymer cover layer, ceramic strike-face, fibre reinforced polymer intermediate layer and the metal matrix composite reinforced backplate, were manufactured and assembled by adhesive technology. The proposed laminated protection system is suitable for armoured ground vehicles;however, it could be used as armour on ground, air and naval platforms. The design of the protection system, including material selection and thickness, was elaborated depending on the performance requirements of Level 4 + STANAG 4569 military standard(projectile 14.5 mm × 114 mm API B32) and especially on a design philosophy which is analysed with the specifications. The backplate of this new composite is a hybrid material of Metal Matrix Composite(MMC) reinforced with carbon nanotubes(CNTs), manufactured with the use of powder metallurgy technique. The composite backplate material was morphologically, mechanically and chemically analysed. Results show that all plates are presenting high mechanical properties and ballistic characteristics, compared to commonly used armour plates. Real military ballistic tests according to AEP-STANAG 4569 were carried out for the total composite armour systems. After the ballistic tests, AA2024-CNT3 showed the best protection results, compared with the other plates(AA2024-CNT1 and AA2024-CNT2), with the projectile being unable to fully penetrate the composite plate.展开更多
Modern conflicts demand substantial physical and psychological exertion,often resulting in fatigue and diminished combat or operational readiness.Several exoskeletons have been developed recently to address these chal...Modern conflicts demand substantial physical and psychological exertion,often resulting in fatigue and diminished combat or operational readiness.Several exoskeletons have been developed recently to address these challenges,presenting various limitations that affect their operational or everyday usability.This article evaluates the performance of a dual-purpose passive ankle exoskeleton developed for the reduction of metabolic costs during walking,seeking to identify a force element that could be applied to the target population.Based on the 6-min walk test,twenty-nine subjects participated in the study using three different force elements.The results indicate that it is possible to reduce metabolic expenditure while using the developed exoskeleton.Additionally,the comfort and range of motion results verify the exoskeleton's suitability for use in uneven terrain and during extended periods.Nevertheless,the choice of the force element should be tailored to each user,and the control system should be adjustable to optimise the exoskeleton's performance.展开更多
A philosophy for the design of novel,lightweight,multi-layered armor,referred to as Composite Armor Philosophy(CAP),which can adapt to the passive protection of light-,medium-,and heavy-armored vehicles,is presented i...A philosophy for the design of novel,lightweight,multi-layered armor,referred to as Composite Armor Philosophy(CAP),which can adapt to the passive protection of light-,medium-,and heavy-armored vehicles,is presented in this study.CAP can serve as a guiding principle to assist designers in comprehending the distinct roles fulfilled by each component.The CAP proposal comprises four functional layers,organized in a suggested hierarchy of materials.Particularly notable is the inclusion of a ceramic-composite principle,representing an advanced and innovative solution in the field of armor design.This paper showcases real-world defense industry applications,offering case studies that demonstrate the effectiveness of this advanced approach.CAP represents a significant milestone in the history of passive protection,marking an evolutionary leap in the field.This philosophical approach provides designers with a powerful toolset with which to enhance the protection capabilities of military vehicles,making them more resilient and better equipped to meet the challenges of modern warfare.展开更多
Metasurfaces in the long wave infrared(LWIR)spectrum hold great potential for applications in ther-mal imaging,atmospheric remote sensing,and target identification,among others.In this study,we designed and experiment...Metasurfaces in the long wave infrared(LWIR)spectrum hold great potential for applications in ther-mal imaging,atmospheric remote sensing,and target identification,among others.In this study,we designed and experimentally demonstrated a 4 mm size,all-silicon metasurface metalens with large depth of focus opera-tional across a broadband range from 9µm to 11.5µm.The experimental results confirm effective focusing and imaging capabilities of the metalens in LWIR region,thus paving the way for practical LWIR applications of met-alens technology.展开更多
To reduce the negative impact of the power amplifier(PA)nonlinear distortion caused by the orthogonal frequency division multiplexing(OFDM)waveform with high peak-to-average power ratio(PAPR)in integrated radar and co...To reduce the negative impact of the power amplifier(PA)nonlinear distortion caused by the orthogonal frequency division multiplexing(OFDM)waveform with high peak-to-average power ratio(PAPR)in integrated radar and communication(RadCom)systems is studied,the channel estimation in passive sensing scenarios.Adaptive channel estimation methods are proposed based on different pilot patterns,considering nonlinear distortion and channel sparsity.The proposed methods achieve sparse channel results by manipulating the least squares(LS)frequency-domain channel estimation results to preserve the most significant taps.The decision-aided method is used to optimize the sparse channel results to reduce the effect of nonlinear distortion.Numerical results show that the channel estimation performance of the proposed methods is better than that of the conventional methods under different pilot patterns.In addition,the bit error rate performance in communication and passive radar detection performance show that the proposed methods have good comprehensive performance.展开更多
In this paper,we study the accuracy of delay-Doppler parameter estimation of targets in a passive radar using orthogonal frequency division multiplexing(OFDM)signal.A coarse-fine joint estimation method is proposed to...In this paper,we study the accuracy of delay-Doppler parameter estimation of targets in a passive radar using orthogonal frequency division multiplexing(OFDM)signal.A coarse-fine joint estimation method is proposed to achieve better estimation accuracy of target parameters without excessive computational burden.Firstly,the modulation symbol domain(MSD)method is used to roughly estimate the delay and Doppler of targets.Then,to obtain high-precision Doppler estimation,the atomic norm(AN)based on the multiple measurement vectors(MMV)model(MMV-AN)is used to manifest the signal sparsity in the continuous Doppler domain.At the same time,a reference signal compensation(RSC)method is presented to obtain highprecision delay estimation.Simulation results based on the OFDM signal show that the coarse-fine joint estimation method based on AN-RSC can obtain a more accurate estimation of target parameters compared with other algorithms.In addition,the proposed method also possesses computational advantages compared with the joint parameter estimation.展开更多
The acid bio-leaching process of vanadium extraction from clay vanadium water-leached residue was studied and the effect of the performance of iron transformation was investigated.Acidithiobacillus ferrooxidans affect...The acid bio-leaching process of vanadium extraction from clay vanadium water-leached residue was studied and the effect of the performance of iron transformation was investigated.Acidithiobacillus ferrooxidans affects the dissolution of vanadium through the catalytic effect on Fe^3+/Fe^2+couple and material exchange.The passivation of iron settling correlates with ferrous ion content in bio-leaching solution.In medium containing A.ferrooxidans and Fe(Ⅲ),the increment in Fe(Ⅱ)concentration leads to the formation of jarosite,generating a decline in vanadium extraction efficiency.Analysis of cyclic voltammetry shows that Fe(Ⅱ)ion is apt to be oxidized and translated into precipitate by A.ferrooxidans,which strongly adsorbed to the surface of the residue.Fe(Ⅲ)ion promotes the vanadium extraction due to its oxidizing activity.Admixing A.ferrooxidans to Fe(Ⅲ)medium elevates the reduction of low valence state vanadium and facilitates the exchange of substance between minerals and solution.This motivates 3.8%and 21.8%increments in recovery ratio and leaching rate of vanadium compared to the Fe(Ⅲ)exclusive use,respectively.Moreover,Fe(Ⅱ)ion impacts vanadium extraction slightly in sterile medium but negatively influences vanadium leaching in the presence of bacteria.展开更多
The effects of cations stress of magnesium ion and sodium ion on the low-grade nickel sulfide ore oxidative leaching in simulated sulfuric acid solutions were investigated.This study was performed in two courses,inclu...The effects of cations stress of magnesium ion and sodium ion on the low-grade nickel sulfide ore oxidative leaching in simulated sulfuric acid solutions were investigated.This study was performed in two courses,including the effect of the cations on the valuable metals leaching efficiencies of the nickel ore and its influences on the electrochemical oxidation behavior of the nickel ore.The leaching results present that parts of magnesium-containing gangues and ferrous sulfide are preferentially dissolved into lixivium,and the leaching efficiencies of Ni and Cu decreased much related to the leached concentrations of Mg^2+increased.The results of electrochemical measurements show that the oxidation leaching of the low-grade nickel sulfide ore is controlled by the intermediates oxidative diffusion.Mg^2+,as well as Na^+,affects the transformations of the Fe^3+/Fe^2+ couple and sulfur-containing species,and those cations are apt to be attracted by the anions and directionally adhere to the negative active site of the metal sulfide surface,causing an increase in the electrochemical activities,which facilitates the electron transfer between the ore and leaching mediums.By comparative study of the role of Mg^2+ and Na^+,it is found that Mg^2+ negatively affects the oxidative diffusion of the intermediates through promoting the generation of a compact film,which lowers the metals leached efficiencies,and the unfavorable effect of Na+tends to be the coupled effect of the leached Mg^2+ and Fe^3+.展开更多
基金Project(51574135)supported by the National Natural Science Foundation of ChinaProject(KKPT201563022)supported by the Collaborative Innovation Center of Kunming University of Science and Technology,China
文摘Effects of nickel component,thiourea,glue and chloride ions and their interactions on the passivation of copper–nickel based alloy scrap anodes were investigated by combining conventional electrochemical techniques.Results obtained from chronopotentiometry and linear voltammetry curves showed that the Ni component made electrochemical stability of the anode strong and difficult to be corroded,caused by the adsorption of generated Cu2O,NiO or copper powder to the anode surface.The Ni2+reducing Cu2+to Cu+or copper powder aggravated the anode passivation.In a certain range of the glue concentration≤8×10–6 or thiourea concentration≤4×10–6,the increase of glue or thiourea concentration increases the anode passivation time.Over this range,glue and thiourea played an adverse effect.The increase of chloride ions concentration led to the increase in passivation time.
基金Project(2010CB630903) supported by the National Basic Research Program of ChinaProject(51374249) supported by the National Natural Science Foundation of China
文摘Bioleaching and electrochemical experiments were conducted to evaluate pyrrhotite dissolution in the presence of pure L.ferriphilum and mixed culture of L. ferriphilum and A. caldus. The results indicate that the pyrrhotite oxidation behavior is the preferential dissolution of iron accompanied with the massive formation of sulfur in the presence of L. ferriphilum, which significantly hinders the leaching efficiency. Comparatively, the leaching rate of pyrrhotite distinctly increases by 68% in the mixed culture of L. ferriphilum and A. caldus at the 3rd day. But, the accumulated ferric ions and high p H value produced by bioleaching process can give rise to the rapid formation of jarosite, which is the primary passivation film blocking continuous iron extraction during bioleaching by the mixed culture. The addition of A. caldus during leaching by L. ferriphilum can accelerate the oxidation rate of pyrrhotite, but not change the electrochemical oxidation mechanisms of pyrrhotite. XRD and SEM/EDS analyses as well as electrochemical study confirm the above conclusions.
基金Projects(51204208,51374240)supported by the National Natural Science Foundation of ChinaProject(2014zzts028)supported by the Fundamental Research Funds for the Central Universities of Central South University,China
文摘An attempt was made to build up a thick and compact oxide layer rapidly by pre-treating the Pb-Ag-Nd anode in fluoride-containing H2SO4 solution. The passivation reaction of Pb-Ag-Nd anode during pre-treatment process was investigated using cyclic voltammetry, linear scanning voltammetry, environmental scanning electron microscopy and X-ray diffraction analysis. The results show that Pb F2 and PbSO4 are formed near the potential of Pb/PbSO4 couple. The pre-treatment in fluoride-containing H2SO4 solution contributes to the formation of a thick, compact and adherent passive film. Furthermore, pre-treatment in fluoride-containing H2SO4 solution also facilitates the formation of PbO2 on the anodic layer, and the reason could be attributed to the formation of more PbF2 and PbSO4 during the pre-treatment which tend to transform to PbO2 during the following electrowinning process. In addition, the anodic layer on anode with pre-treatment in fluoride-containing H2SO4 solution is thick and compact, and its predominant composition is β-PbO2. In summary, the pre-treatment in fluoride-containing H2SO4 solution benefits the formation of a desirable protective layer in a short time.
文摘Iron(Fe)nanoparticles and graphite(Gr)with different masses of bismuth trisulfide(Bi_(2)S_(3))were mixed by high-energy ball milling treatment to fabricate the corresponding composite iron anodes Bi_(2)S_(3)@Fe-Gr.The hydrogen evolution reaction and iron passivation process on these iron electrodes were investigated in alkaline and neutral solutions.The iron electrode Bi_(2)S_(3)-3@Fe-Gr(The additional amount of Bi_(2)S_(3)was 3 mg)revealed the strongest ability to inhibit hydrogen evolution among the iron electrodes of the present investigation,while the Bi_(2)S_(3)-6@Fe-Gr electrode(The additional amount of Bi_(2)S_(3)was 6 mg)delivered significant performance in inhibiting anodic passivation.This is because the high-energy ball milling process leads to the well-dispersion of Bi_(2)S_(3)and the changes in the surface of Fe nanoparticles,thereby slowing down the passivation of the iron electrode surface.
基金Project(42277175)supported by the National Natural Science Foundation of ChinaProject(NRMSSHR-2022-Z08)supported by the Key Laboratory of Natural Resources Monitoring and Supervision in Southern Hilly Region,Ministry of Natural Resources,China。
文摘Narrow backfill earth pressure estimation is applied to study the stability of supporting structures in the vicinity of existing buildings.Previous narrow backfill earth pressure studies have neglected seismic-unsaturated seepage multi-field coupling,resulting in inaccurate estimates.To address these deficiencies,this paper proposed a calculation method for seismic passive earth pressure in unsaturated narrow backfill,based on inclined thin-layer units.It considers the interlayer shear stress,arching effect,and the multi-field coupling of seismic-unsaturated seepage.Additionally,this paper includes a parametric sensitivity analysis.The outcomes indicate that the earthquake passive ground pressure of unsaturated narrow backfill can be reduced by increasing the aspect ratio,seismic acceleration coefficient,and unsaturation parameterα.It can also be reduced by decreasing the effective interior friction angle,soil cohesion,wallearth friction angle,and vertical discharge.Furthermore,for any width soil,lowering the elevation of the action point of passive thrust can be attained by raising the effective interior friction angle,wall-earth friction angle,and unsaturation parameterα.Reducing soil cohesion,seismic acceleration coefficient,and vertical discharge can also lower the height of the application point of passive thrust.
基金supported by the National Natural Science Foundation of China(Grant No.62073041)the Open Fund of Laboratory of Aerospace Servo Actuation and Transmission(Grant No.LASAT-2023A04)the Fundamental Research Funds for the Central Universities(Grant Nos.2024CX06011,2024CX06079)。
文摘Passive bionic feet,known for their human-like compliance,have garnered attention for their potential to achieve notable environmental adaptability.In this paper,a method was proposed to unifying passive bionic feet static supporting stability and dynamic terrain adaptability through the utilization of the Rigid-Elastic Hybrid(REH)dynamics model.First,a bionic foot model,named the Hinge Tension Elastic Complex(HTEC)model,was developed by extracting key features from human feet.Furthermore,the kinematics and REH dynamics of the HTEC model were established.Based on the foot dynamics,a nonlinear optimization method for stiffness matching(NOSM)was designed.Finally,the HTEC-based foot was constructed and applied onto BHR-B2 humanoid robot.The foot static stability is achieved.The enhanced adaptability is observed as the robot traverses square steel,lawn,and cobblestone terrains.Through proposed design method and structure,the mobility of the humanoid robot is improved.
基金the Research and Development department of EODH SA and has been co-financed by the European Regional Development Fund of the European Union and Greek national funds through the Operational Program Competitiveness,Entrepreneurship and Innovation,under the call RESEARCH-CREATE-INNOVATE(project code:T1EDK-04429).
文摘This paper is investigating the use of composite armour reinforced by nanomaterials, for the protection of light armoured(LAV) and medium armoured military vehicles(MAV), and the interaction between the composite materials and high-performance ballistic projectiles. Four armour materials, consisted of front hybrid fibre reinforced polymer cover layer, ceramic strike-face, fibre reinforced polymer intermediate layer and the metal matrix composite reinforced backplate, were manufactured and assembled by adhesive technology. The proposed laminated protection system is suitable for armoured ground vehicles;however, it could be used as armour on ground, air and naval platforms. The design of the protection system, including material selection and thickness, was elaborated depending on the performance requirements of Level 4 + STANAG 4569 military standard(projectile 14.5 mm × 114 mm API B32) and especially on a design philosophy which is analysed with the specifications. The backplate of this new composite is a hybrid material of Metal Matrix Composite(MMC) reinforced with carbon nanotubes(CNTs), manufactured with the use of powder metallurgy technique. The composite backplate material was morphologically, mechanically and chemically analysed. Results show that all plates are presenting high mechanical properties and ballistic characteristics, compared to commonly used armour plates. Real military ballistic tests according to AEP-STANAG 4569 were carried out for the total composite armour systems. After the ballistic tests, AA2024-CNT3 showed the best protection results, compared with the other plates(AA2024-CNT1 and AA2024-CNT2), with the projectile being unable to fully penetrate the composite plate.
基金the Portuguese Army,through CINAMIL,within project ELITE2-Enhancement LITe ExoskeletonFoundation for Science and Technology (FCT),through IDMEC,under LAETA,project UIDB/50022/2020 for supporting this research。
文摘Modern conflicts demand substantial physical and psychological exertion,often resulting in fatigue and diminished combat or operational readiness.Several exoskeletons have been developed recently to address these challenges,presenting various limitations that affect their operational or everyday usability.This article evaluates the performance of a dual-purpose passive ankle exoskeleton developed for the reduction of metabolic costs during walking,seeking to identify a force element that could be applied to the target population.Based on the 6-min walk test,twenty-nine subjects participated in the study using three different force elements.The results indicate that it is possible to reduce metabolic expenditure while using the developed exoskeleton.Additionally,the comfort and range of motion results verify the exoskeleton's suitability for use in uneven terrain and during extended periods.Nevertheless,the choice of the force element should be tailored to each user,and the control system should be adjustable to optimise the exoskeleton's performance.
基金co-financed by the European Regional Development Fund of the European UnionGreek national funds through the Operational Program Competitiveness,Entrepreneurship and Innovation,under the call RESEARCH-CREATE-INNOVATE(project code:T1EDK-04429)。
文摘A philosophy for the design of novel,lightweight,multi-layered armor,referred to as Composite Armor Philosophy(CAP),which can adapt to the passive protection of light-,medium-,and heavy-armored vehicles,is presented in this study.CAP can serve as a guiding principle to assist designers in comprehending the distinct roles fulfilled by each component.The CAP proposal comprises four functional layers,organized in a suggested hierarchy of materials.Particularly notable is the inclusion of a ceramic-composite principle,representing an advanced and innovative solution in the field of armor design.This paper showcases real-world defense industry applications,offering case studies that demonstrate the effectiveness of this advanced approach.CAP represents a significant milestone in the history of passive protection,marking an evolutionary leap in the field.This philosophical approach provides designers with a powerful toolset with which to enhance the protection capabilities of military vehicles,making them more resilient and better equipped to meet the challenges of modern warfare.
基金Supported by National Key R&D Program of China(2021YFA0715500)National Natural Science Foundation of China(NSFC)(12227901)+1 种基金Strategic Priority Research Program(B)of the Chinese Academy of Sciences(XDB0580000)Chinese Academy of Sciences President's In-ternational Fellowship Initiative(2021PT0007).
文摘Metasurfaces in the long wave infrared(LWIR)spectrum hold great potential for applications in ther-mal imaging,atmospheric remote sensing,and target identification,among others.In this study,we designed and experimentally demonstrated a 4 mm size,all-silicon metasurface metalens with large depth of focus opera-tional across a broadband range from 9µm to 11.5µm.The experimental results confirm effective focusing and imaging capabilities of the metalens in LWIR region,thus paving the way for practical LWIR applications of met-alens technology.
基金supported by the National Natural Science Foundation of China(61931015,62071335,62250024)the Natural Science Foundation of Hubei Province of China(2021CFA002)+1 种基金the Fundamental Research Funds for the Central Universities of China(2042022dx0001)the Science and Technology Program of Shenzhen(JCYJ20170818112037398).
文摘To reduce the negative impact of the power amplifier(PA)nonlinear distortion caused by the orthogonal frequency division multiplexing(OFDM)waveform with high peak-to-average power ratio(PAPR)in integrated radar and communication(RadCom)systems is studied,the channel estimation in passive sensing scenarios.Adaptive channel estimation methods are proposed based on different pilot patterns,considering nonlinear distortion and channel sparsity.The proposed methods achieve sparse channel results by manipulating the least squares(LS)frequency-domain channel estimation results to preserve the most significant taps.The decision-aided method is used to optimize the sparse channel results to reduce the effect of nonlinear distortion.Numerical results show that the channel estimation performance of the proposed methods is better than that of the conventional methods under different pilot patterns.In addition,the bit error rate performance in communication and passive radar detection performance show that the proposed methods have good comprehensive performance.
基金supported by the National Natural Science Foundation of China(6193101562071335)+1 种基金the Technological Innovation Project of Hubei Province of China(2019AAA061)the Natural Science F oundation of Hubei Province of China(2021CFA002)。
文摘In this paper,we study the accuracy of delay-Doppler parameter estimation of targets in a passive radar using orthogonal frequency division multiplexing(OFDM)signal.A coarse-fine joint estimation method is proposed to achieve better estimation accuracy of target parameters without excessive computational burden.Firstly,the modulation symbol domain(MSD)method is used to roughly estimate the delay and Doppler of targets.Then,to obtain high-precision Doppler estimation,the atomic norm(AN)based on the multiple measurement vectors(MMV)model(MMV-AN)is used to manifest the signal sparsity in the continuous Doppler domain.At the same time,a reference signal compensation(RSC)method is presented to obtain highprecision delay estimation.Simulation results based on the OFDM signal show that the coarse-fine joint estimation method based on AN-RSC can obtain a more accurate estimation of target parameters compared with other algorithms.In addition,the proposed method also possesses computational advantages compared with the joint parameter estimation.
基金Project(DY135-B2-15) supported by the China Ocean Mineral Resource R&D AssociationProject(2015ZX07205-003) supported by Major Science and Technology Program for Water Pollution Control and Treatment,ChinaProjects(21176242,21176026) supported by the National Natural Science Foundation of China
文摘The acid bio-leaching process of vanadium extraction from clay vanadium water-leached residue was studied and the effect of the performance of iron transformation was investigated.Acidithiobacillus ferrooxidans affects the dissolution of vanadium through the catalytic effect on Fe^3+/Fe^2+couple and material exchange.The passivation of iron settling correlates with ferrous ion content in bio-leaching solution.In medium containing A.ferrooxidans and Fe(Ⅲ),the increment in Fe(Ⅱ)concentration leads to the formation of jarosite,generating a decline in vanadium extraction efficiency.Analysis of cyclic voltammetry shows that Fe(Ⅱ)ion is apt to be oxidized and translated into precipitate by A.ferrooxidans,which strongly adsorbed to the surface of the residue.Fe(Ⅲ)ion promotes the vanadium extraction due to its oxidizing activity.Admixing A.ferrooxidans to Fe(Ⅲ)medium elevates the reduction of low valence state vanadium and facilitates the exchange of substance between minerals and solution.This motivates 3.8%and 21.8%increments in recovery ratio and leaching rate of vanadium compared to the Fe(Ⅲ)exclusive use,respectively.Moreover,Fe(Ⅱ)ion impacts vanadium extraction slightly in sterile medium but negatively influences vanadium leaching in the presence of bacteria.
基金Projects(2019M650972,2017M621034)supported by China Postdoctoral Science Foundation。
文摘The effects of cations stress of magnesium ion and sodium ion on the low-grade nickel sulfide ore oxidative leaching in simulated sulfuric acid solutions were investigated.This study was performed in two courses,including the effect of the cations on the valuable metals leaching efficiencies of the nickel ore and its influences on the electrochemical oxidation behavior of the nickel ore.The leaching results present that parts of magnesium-containing gangues and ferrous sulfide are preferentially dissolved into lixivium,and the leaching efficiencies of Ni and Cu decreased much related to the leached concentrations of Mg^2+increased.The results of electrochemical measurements show that the oxidation leaching of the low-grade nickel sulfide ore is controlled by the intermediates oxidative diffusion.Mg^2+,as well as Na^+,affects the transformations of the Fe^3+/Fe^2+ couple and sulfur-containing species,and those cations are apt to be attracted by the anions and directionally adhere to the negative active site of the metal sulfide surface,causing an increase in the electrochemical activities,which facilitates the electron transfer between the ore and leaching mediums.By comparative study of the role of Mg^2+ and Na^+,it is found that Mg^2+ negatively affects the oxidative diffusion of the intermediates through promoting the generation of a compact film,which lowers the metals leached efficiencies,and the unfavorable effect of Na+tends to be the coupled effect of the leached Mg^2+ and Fe^3+.