In order to investigate the vertical change of atmospheric particulates and it’s influence of the resident’s floor-choosing in Beijing,we take PM10 as the research object,the 18th building whichis 49.2 m in height o...In order to investigate the vertical change of atmospheric particulates and it’s influence of the resident’s floor-choosing in Beijing,we take PM10 as the research object,the 18th building whichis 49.2 m in height of China University of Geosciences as the representative of resident building in Beijing,use the TSP/PM 10/PM2.5-2 particulate-sampling machine to sample PM10 on the south balcony of 1,4,8,12,16th floor respectively in 72 hours from 12 o’clock of January 31st to 12 o’clock of February 2nd,2007, weigh the accurate weight of the fiberglas filter membrane on the Sarlorius electronic balance展开更多
华北大气污染区域化正在对农业生态区域产生显著影响,为了了解华北农业地区大气细颗粒物PM_(2.5)的季节分布特征,2017年7月、9月、12月以及2018年4月在中国科学院禹城农业生态综合实验站进行分季节PM_(2.5)样品采集,并测定分析了样品中3...华北大气污染区域化正在对农业生态区域产生显著影响,为了了解华北农业地区大气细颗粒物PM_(2.5)的季节分布特征,2017年7月、9月、12月以及2018年4月在中国科学院禹城农业生态综合实验站进行分季节PM_(2.5)样品采集,并测定分析了样品中31种化学成分。结果表明,碳质气溶胶总体的浓度水平为13.11±8.37μg m^(−3),有机碳(OC)冬春季节浓度较高,元素碳(EC)浓度在秋冬季节较高。同时OC/EC的比值在秋季明显偏低,表明在秋季二次碳质气溶胶对PM_(2.5)贡献较小。水溶性离子浓度总体在冬季最高。NO_(3)^(-)/SO_(4)^(2-)比值在夏季明显偏低为0.69,华北地区夏季固定点源对大气污染的贡献相对较高。PM_(2.5)中金属元素以Na、Mg、Al、Ca、K、Fe等地壳元素为主,具有致癌风险的Co、Cr、Ni、Pb、As等金属元素年均浓度为0.32±0.24 ng m^(−3)、5.40±5.42 ng m^(−3)、10.23±7.46 ng m^(−3)、42.23±27.75 ng m^(−3)、5.66±3.79 ng m^(−3)。受体模型(PMF)计算结果表明,PM_(2.5)的主要来源为二次污染源、生物质燃烧源、燃煤燃油源、柴油车尾气和土壤源,贡献率分别达37.1%、18.2%、14.2%、9.4%和7.9%,表明农业区细颗粒物污染受到华北工业、农业与自然排放的多重影响。展开更多
Taking wall-flow diesel particulate filter(DPF) as the research objective and separately assuming its filtering wall to be composed of numerous spherical or cylindrical elements, two different mathematical models of s...Taking wall-flow diesel particulate filter(DPF) as the research objective and separately assuming its filtering wall to be composed of numerous spherical or cylindrical elements, two different mathematical models of steady filtration for wall-flow diesel particulate filter were developed and verified by experiments as well as numerically solved. Furthermore, the effects of the macroand micro-structural parameters of filtering wall and exhaust-flow characteristic parameters on trapping efficiency were also analyzed and researched. The results show that: 1) The two developed mathematical models are consistent with the prediction of variation of particulate size; the influence of various factors on the steady trapping efficiency is exactly the same. Compared to model 2, model 1 is more suitable for describing the steady filtration process of wall-flow diesel particulate filter; 2)The major influencing factors on steady trapping efficiency of wall-flow diesel particulate filter are the macro-and micro-structural parameters of filtering wall; and the secondary influencing factors are the exhaust-flow characteristic parameters and macro-structural parameters of filter; 3)The steady trapping efficiency will be improved by increasing filter body volume, pore density as well as wall thickness and by decreasing exhaust-flow, but effects will be weakened when particulate size exceeds a certain critical value; 4) The steady trapping efficiency will be significantly improved by increasing exhaust-flow temperature and filtering wall thickness, but effects will be also weakened when particulate size exceeds a certain critical value; 5) The steady trapping efficiency will approximately linearly increase with reducing porosity, micropore aperture and pore width.展开更多
Numerical simulation has been carried out to investigate the major factors affecting the time of composite regeneration due to coupling cerium-based additive and microwave for diesel particulate f3ilter(DPF). Effect o...Numerical simulation has been carried out to investigate the major factors affecting the time of composite regeneration due to coupling cerium-based additive and microwave for diesel particulate f3ilter(DPF). Effect on the composite regeneration time from various factors such as mass flow rate of exhaust gas, temperature of exhaust gas, oxygen concentration of exhaust gas, microwave power and amount of cerium-based additive are investigated. And a mathematical model based on fuzzy least squares support vector machines has been developed to forecast the endpoint of the composite regeneration. The results show that the relative error of endpoint forecasting model of composite regeneration is less than 3.5%, and the oxygen concentration of exhaust gas has the biggest effect on the endpoint of composite regeneration, followed by the mass flow rate of exhaust gas, the microwave power, the temperature of exhaust gas and the amount of cerium-based additive.展开更多
Source apportionment of particulate matters with aerodynamic diameter less than 10 μm (PM10) was conducted in the suburban area of Changsha, China. PM10 samples for 24 h collected with TEOM 1400a and ACCU system in...Source apportionment of particulate matters with aerodynamic diameter less than 10 μm (PM10) was conducted in the suburban area of Changsha, China. PM10 samples for 24 h collected with TEOM 1400a and ACCU system in July and October 2008 were chemically analyzed by the wavelength dispersive X-ray fluorescence (WD-XRF). Source appointment was implemented by the principal component analysis/absolute principal component analysis (PCA/APCA) to identify the possible sources and to quantify the contributions of the sources to PM10. Results show that as the PM10 concentration is increased from (85.6±43.7) μg/m3 in July 2008 to (107.6±35.7) μg/m^3 in October 2008, the concentrations of the anthropogenic elements (P, S, C1, K, Mn, Ni, Cu, Zn, and Pb) are basically increased but concentrations of the natural elements (Na, Mg, Al, Si, Ca, Ti, and Fe) are essentially decreased. Six main sources of PM10 are identified in the suburban of Changsha, China: soil dust, secondary aerosols, domestic oil combustion, waste incineration, traffic emission, and industrial emission contribute 57.7%, 24.0%, 9.8%, 5.0%, 2.0%, and 1.5%, respectively. Soil dust and secondary aerosols are the two major sources of particulate air pollution in suburban area of Changsha, China, so effective measures should be taken to control these two particulate pollutants.展开更多
A three-dimensional diesel particulate filter(DPF)simulation model was developed by using AVL software FIRE to study the effects of four factors on soot particle distributions along the axial and radial directions in ...A three-dimensional diesel particulate filter(DPF)simulation model was developed by using AVL software FIRE to study the effects of four factors on soot particle distributions along the axial and radial directions in the DPF after the model accuracy was validated.An orthogonal test method was used to determine the importance and weights of the design of experiments(DoE)factors such as the expanding angle,the number of channels per square inch,and the exhaust mass flow rate.The effects of these factors on the uniformity of the soot particle distributions were also analyzed.The results show that when the soot loading time was 400 s,the soot particles inside the DPF along the axial direction exhibited a bowl shape,which was high on the both ends and low in the middle.The uniformity of the axial distribution of soot particles reduces significantly with an increase in the number of channels per square inch.The uniformity of the radial distribution reduced with an increase in the expanding angle of the divergent tube.Based on the impacts on the axial uniformity,the three most influencing factors in a descending order are the number of channels per square inch,the exhaust mass flow rate,and the expanding angle of the divergent tube.展开更多
In order to reveal the mechanics of composite regeneration by coupling cerium-based additive and microwave for a diesel particulate filter, a composite regeneration model by coupling cerium-based additive and microwav...In order to reveal the mechanics of composite regeneration by coupling cerium-based additive and microwave for a diesel particulate filter, a composite regeneration model by coupling cerium-based additive and microwave for a diesel particulate filter was established based on field synergy theory. Performance evaluation on field synergy and composite regeneration of the diesel particulate filter was conducted by using the vortex crushing combustion and field synergy mathematical models. The results show that the peak temperature of the particulate filter body reaches 1180-1190 K when the regeneration time is 175 s, and there are optimal coordination degree between the velocity vector and temperature gradient of the filter body and the maximum ratio0.56-0.60 of the best burning regeneration region is obtained. Accordingly, the largest regeneration combustion rate inside the particulate filter body and the highest regeneration efficiency at the moment are achieved.展开更多
Objective Studies of the association of hypertension with long-term exposure to particulate matter less than 2.5μm in diameter(PM2.5)have shown contradictory results and the magnitude of the association is still uncl...Objective Studies of the association of hypertension with long-term exposure to particulate matter less than 2.5μm in diameter(PM2.5)have shown contradictory results and the magnitude of the association is still unclear.Hence,we conducted a meta-analysis of cohort studies to assess the effect of long-term exposure to PM2.5 on incident hypertension.展开更多
Particulate composites are one of the widely used materials in producing numerous state-of-the-art components in biomedical,automobile,aerospace including defence technology.Variety of modelling techniques have been a...Particulate composites are one of the widely used materials in producing numerous state-of-the-art components in biomedical,automobile,aerospace including defence technology.Variety of modelling techniques have been adopted in the past to model mechanical behaviour of particulate composites.Due to their favourable properties,particle-based methods provide a convenient platform to model failure or fracture of these composites.Smooth particle hydrodynamics(SPH)is one of such methods which demonstrate excellent potential for modelling failure or fracture of particulate composites in a Lagrangian setting.One of the major challenges in using SPH method for modelling composite materials depends on accurate and efficient way to treat interface and boundary conditions.In this paper,a masterslave method based multi-freedom constraints is proposed to impose essential boundary conditions and interfacial displacement constraints in modelling mechanical behaviour of composite materials using SPH method.The proposed methodology enforces the above constraints more accurately and requires only smaller condition number for system stiffness matrix than the procedures based on typical penalty function approach.A minimum cut-off value-based error criteria is employed to improve the computational efficiency of the proposed methodology.In addition,the proposed method is further enhanced by adopting a modified numerical interpolation scheme along the boundary to increase the accuracy and computational efficiency.The numerical examples demonstrate that the proposed master-slave approach yields better accuracy in enforcing displacement constraints and requires approximately the same computational time as that of penalty method.展开更多
The temporal variation of ventilation coefficient was estimated and a simple model for the prediction of urban ventilation coefficient in Changsha was developed. Firstly, Pearson correlation analysis was used to inves...The temporal variation of ventilation coefficient was estimated and a simple model for the prediction of urban ventilation coefficient in Changsha was developed. Firstly, Pearson correlation analysis was used to investigate the relationship between meteorological parameters and mixing layer height during 2005-2009 in Changsha, China. Secondly, the multi-linear regression model between daytime and nighttime was adopted to predict the temporal ventilation coefficient. Thirdly, the validation of the model between the predicted and observed ventilation coefficient in 2010 was conducted. The results showed that ventilation coefficient significantly varied and remained high during daytime, while it stayed relatively constant and low during nighttime. In addition, the diurnal ventilation coefficient was distinctly negatively correlated with PM10 (particle with the diameter less than 10 μm) concentration in Changsha, China. The predicted ventilation coefficient agreed well with the observed values based on the multi-linear regression models during daytime and nighttime. The urban temporal ventilation coefficient could be accurately predicted by some simple meteorological parameters during daytime and nighttime. The ventilation coefficient played an important role in the PM10 concentration level.展开更多
Thermal energy storage(TES)is a key technology for renewable energy utilization and the improvement of the energy efficiency of heat processes.Sectors include industrial process heat and conventional and renewable pow...Thermal energy storage(TES)is a key technology for renewable energy utilization and the improvement of the energy efficiency of heat processes.Sectors include industrial process heat and conventional and renewable power generation.TES systems correct the mismatch between supply and demand of thermal energy.In the medium to high temperature range(100~1000℃),only limited storage technology is commercially available and a strong effort is needed to develop a range of storage technologies which are efficient and economical for the very specific requirements of the different application sectors.At the DLR's Institute of Technical Thermodynamics,the complete spectrum of high temperature storage technologies,from various types of sensible over latent heat to thermochemical heat storages are being developed.Different concepts are proposed depending on the heat transfer fluid(synthetic oil,water/steam,molten salt,air)and the required temperature range.The aim is the development of cost effective,efficient and reliable thermal storage systems.Research focuses on characterization of storage materials,enhancement of internal heat transfer,design of innovative storage concepts and modelling of storage components and systems.Demonstration of the storage technology takes place from laboratory scale to field testing(5 kW^1 MW).The paper gives an overview on DLR's current developments.展开更多
A modified hot wire method was applied to measure the thermal conductivity of different kinds of parti culate materials. With a cylindrical device, a heating rod and two thermocouples, the measurement can be finished...A modified hot wire method was applied to measure the thermal conductivity of different kinds of parti culate materials. With a cylindrical device, a heating rod and two thermocouples, the measurement can be finished within several minutes. Compared with the reference data, the results obtained from the measurements were quite reasonable.展开更多
Objective Air pollution is an important risk factor for cardiovascular diseases throughout the world.Fine particulate matter(PM)air pollution alone is responsible for over three million deaths each year.Large and grow...Objective Air pollution is an important risk factor for cardiovascular diseases throughout the world.Fine particulate matter(PM)air pollution alone is responsible for over three million deaths each year.Large and growing literature has explored whether short-term exposure to fine particulate matter is associated with stroke,but results from prior studies have been inconsistent.To fill this gap,we assessed the evidence quantitatively from epidemiological time-series studies published worldwide and determined whether short-term exposure to fine particulate matter(<2.5μm or<10μm)diameter[PM2.5 and PM10]was associated with increased risk of hospital admission for stroke(including ischemic and hemorrhagic stroke).展开更多
AlN particulate reinforced 6061 aluminum alloy composite was fabricated by powder metallurgy method and hot rolled after extrusion. Tensile strength and elongation at elevated temperature were measured by tensile test...AlN particulate reinforced 6061 aluminum alloy composite was fabricated by powder metallurgy method and hot rolled after extrusion. Tensile strength and elongation at elevated temperature were measured by tensile test at initial strain rates between 10 -2 s -1 and 10 0 s -1 . The AlNp/6061Al composite exhibits an m value of 0.42 and a maximum elongation of 450% at 863?K. Differential scanning calorimeter was used to ascertain the possibility of any partial melting in the vicinity of optimum superplastic temperature. Partial melting resulting from solute segregation at interfaces has much influence on superplasticity of the composite. It is postulated that AlNp/matrix interface sliding occurs along with grain boundary in superplastic deformation.展开更多
文摘In order to investigate the vertical change of atmospheric particulates and it’s influence of the resident’s floor-choosing in Beijing,we take PM10 as the research object,the 18th building whichis 49.2 m in height of China University of Geosciences as the representative of resident building in Beijing,use the TSP/PM 10/PM2.5-2 particulate-sampling machine to sample PM10 on the south balcony of 1,4,8,12,16th floor respectively in 72 hours from 12 o’clock of January 31st to 12 o’clock of February 2nd,2007, weigh the accurate weight of the fiberglas filter membrane on the Sarlorius electronic balance
文摘华北大气污染区域化正在对农业生态区域产生显著影响,为了了解华北农业地区大气细颗粒物PM_(2.5)的季节分布特征,2017年7月、9月、12月以及2018年4月在中国科学院禹城农业生态综合实验站进行分季节PM_(2.5)样品采集,并测定分析了样品中31种化学成分。结果表明,碳质气溶胶总体的浓度水平为13.11±8.37μg m^(−3),有机碳(OC)冬春季节浓度较高,元素碳(EC)浓度在秋冬季节较高。同时OC/EC的比值在秋季明显偏低,表明在秋季二次碳质气溶胶对PM_(2.5)贡献较小。水溶性离子浓度总体在冬季最高。NO_(3)^(-)/SO_(4)^(2-)比值在夏季明显偏低为0.69,华北地区夏季固定点源对大气污染的贡献相对较高。PM_(2.5)中金属元素以Na、Mg、Al、Ca、K、Fe等地壳元素为主,具有致癌风险的Co、Cr、Ni、Pb、As等金属元素年均浓度为0.32±0.24 ng m^(−3)、5.40±5.42 ng m^(−3)、10.23±7.46 ng m^(−3)、42.23±27.75 ng m^(−3)、5.66±3.79 ng m^(−3)。受体模型(PMF)计算结果表明,PM_(2.5)的主要来源为二次污染源、生物质燃烧源、燃煤燃油源、柴油车尾气和土壤源,贡献率分别达37.1%、18.2%、14.2%、9.4%和7.9%,表明农业区细颗粒物污染受到华北工业、农业与自然排放的多重影响。
基金Projects(5117604551276056)supported by the National Natural Science Foundation of China+1 种基金Projects(201208430262201306130031)supported by the National Studying Abroad Foundation of the China Scholarship Council
文摘Taking wall-flow diesel particulate filter(DPF) as the research objective and separately assuming its filtering wall to be composed of numerous spherical or cylindrical elements, two different mathematical models of steady filtration for wall-flow diesel particulate filter were developed and verified by experiments as well as numerically solved. Furthermore, the effects of the macroand micro-structural parameters of filtering wall and exhaust-flow characteristic parameters on trapping efficiency were also analyzed and researched. The results show that: 1) The two developed mathematical models are consistent with the prediction of variation of particulate size; the influence of various factors on the steady trapping efficiency is exactly the same. Compared to model 2, model 1 is more suitable for describing the steady filtration process of wall-flow diesel particulate filter; 2)The major influencing factors on steady trapping efficiency of wall-flow diesel particulate filter are the macro-and micro-structural parameters of filtering wall; and the secondary influencing factors are the exhaust-flow characteristic parameters and macro-structural parameters of filter; 3)The steady trapping efficiency will be improved by increasing filter body volume, pore density as well as wall thickness and by decreasing exhaust-flow, but effects will be weakened when particulate size exceeds a certain critical value; 4) The steady trapping efficiency will be significantly improved by increasing exhaust-flow temperature and filtering wall thickness, but effects will be also weakened when particulate size exceeds a certain critical value; 5) The steady trapping efficiency will approximately linearly increase with reducing porosity, micropore aperture and pore width.
基金Projects(51176045,51276056)supported by the National Natural Science Foundation of ChinaProject(201208430262)supported by the National Studying Abroad Foundation Project of China
文摘Numerical simulation has been carried out to investigate the major factors affecting the time of composite regeneration due to coupling cerium-based additive and microwave for diesel particulate f3ilter(DPF). Effect on the composite regeneration time from various factors such as mass flow rate of exhaust gas, temperature of exhaust gas, oxygen concentration of exhaust gas, microwave power and amount of cerium-based additive are investigated. And a mathematical model based on fuzzy least squares support vector machines has been developed to forecast the endpoint of the composite regeneration. The results show that the relative error of endpoint forecasting model of composite regeneration is less than 3.5%, and the oxygen concentration of exhaust gas has the biggest effect on the endpoint of composite regeneration, followed by the mass flow rate of exhaust gas, the microwave power, the temperature of exhaust gas and the amount of cerium-based additive.
基金Project (FANEDD 200545) supported by the Foundation for the Author of National Excellent Doctoral Dissertation of China Project (50408019) supported by the National Natural Science Foundation of China Project (2008BAJ12B03) supported by National Key Project of Scientific and Technical Supporting Programs of China
文摘Source apportionment of particulate matters with aerodynamic diameter less than 10 μm (PM10) was conducted in the suburban area of Changsha, China. PM10 samples for 24 h collected with TEOM 1400a and ACCU system in July and October 2008 were chemically analyzed by the wavelength dispersive X-ray fluorescence (WD-XRF). Source appointment was implemented by the principal component analysis/absolute principal component analysis (PCA/APCA) to identify the possible sources and to quantify the contributions of the sources to PM10. Results show that as the PM10 concentration is increased from (85.6±43.7) μg/m3 in July 2008 to (107.6±35.7) μg/m^3 in October 2008, the concentrations of the anthropogenic elements (P, S, C1, K, Mn, Ni, Cu, Zn, and Pb) are basically increased but concentrations of the natural elements (Na, Mg, Al, Si, Ca, Ti, and Fe) are essentially decreased. Six main sources of PM10 are identified in the suburban of Changsha, China: soil dust, secondary aerosols, domestic oil combustion, waste incineration, traffic emission, and industrial emission contribute 57.7%, 24.0%, 9.8%, 5.0%, 2.0%, and 1.5%, respectively. Soil dust and secondary aerosols are the two major sources of particulate air pollution in suburban area of Changsha, China, so effective measures should be taken to control these two particulate pollutants.
基金Project(52066008)supported by the National Natural Science Foundation,ChinaProject(2018FA030)supported by Yunnan Province Fundamental Research Key Project Foundation,China+1 种基金Project(2018ZE001)supported by Yunnan Province Major Science and Technology Project Foundation,ChinaProject(202005AG070057)supported by Yunnan Province Science and Technology Innovation Funds for key Laboratories,China。
文摘A three-dimensional diesel particulate filter(DPF)simulation model was developed by using AVL software FIRE to study the effects of four factors on soot particle distributions along the axial and radial directions in the DPF after the model accuracy was validated.An orthogonal test method was used to determine the importance and weights of the design of experiments(DoE)factors such as the expanding angle,the number of channels per square inch,and the exhaust mass flow rate.The effects of these factors on the uniformity of the soot particle distributions were also analyzed.The results show that when the soot loading time was 400 s,the soot particles inside the DPF along the axial direction exhibited a bowl shape,which was high on the both ends and low in the middle.The uniformity of the axial distribution of soot particles reduces significantly with an increase in the number of channels per square inch.The uniformity of the radial distribution reduced with an increase in the expanding angle of the divergent tube.Based on the impacts on the axial uniformity,the three most influencing factors in a descending order are the number of channels per square inch,the exhaust mass flow rate,and the expanding angle of the divergent tube.
基金Projects(51176045,51276056)supported by the National Natural Science Foundation of ChinaProject(531105050037)supported by the Changjiang Scholars and Innovative Research Team in University,ChinaProjects(201208430262,201306130031)supported by the National Studying Abroad Foundation Project of China
文摘In order to reveal the mechanics of composite regeneration by coupling cerium-based additive and microwave for a diesel particulate filter, a composite regeneration model by coupling cerium-based additive and microwave for a diesel particulate filter was established based on field synergy theory. Performance evaluation on field synergy and composite regeneration of the diesel particulate filter was conducted by using the vortex crushing combustion and field synergy mathematical models. The results show that the peak temperature of the particulate filter body reaches 1180-1190 K when the regeneration time is 175 s, and there are optimal coordination degree between the velocity vector and temperature gradient of the filter body and the maximum ratio0.56-0.60 of the best burning regeneration region is obtained. Accordingly, the largest regeneration combustion rate inside the particulate filter body and the highest regeneration efficiency at the moment are achieved.
文摘Objective Studies of the association of hypertension with long-term exposure to particulate matter less than 2.5μm in diameter(PM2.5)have shown contradictory results and the magnitude of the association is still unclear.Hence,we conducted a meta-analysis of cohort studies to assess the effect of long-term exposure to PM2.5 on incident hypertension.
基金National Key R&D Program of China(No.2018YFC0809700,No.2017YFC0803300)National Natural Science Foundation of China(No.71673158,No.11702046).
文摘Particulate composites are one of the widely used materials in producing numerous state-of-the-art components in biomedical,automobile,aerospace including defence technology.Variety of modelling techniques have been adopted in the past to model mechanical behaviour of particulate composites.Due to their favourable properties,particle-based methods provide a convenient platform to model failure or fracture of these composites.Smooth particle hydrodynamics(SPH)is one of such methods which demonstrate excellent potential for modelling failure or fracture of particulate composites in a Lagrangian setting.One of the major challenges in using SPH method for modelling composite materials depends on accurate and efficient way to treat interface and boundary conditions.In this paper,a masterslave method based multi-freedom constraints is proposed to impose essential boundary conditions and interfacial displacement constraints in modelling mechanical behaviour of composite materials using SPH method.The proposed methodology enforces the above constraints more accurately and requires only smaller condition number for system stiffness matrix than the procedures based on typical penalty function approach.A minimum cut-off value-based error criteria is employed to improve the computational efficiency of the proposed methodology.In addition,the proposed method is further enhanced by adopting a modified numerical interpolation scheme along the boundary to increase the accuracy and computational efficiency.The numerical examples demonstrate that the proposed master-slave approach yields better accuracy in enforcing displacement constraints and requires approximately the same computational time as that of penalty method.
基金Project(51178466) supported by the National Natural Science Foundation of ChinaProject(FANEDD200545) supported by Foundation for the Author of National Excellent Doctoral Dissertation of ChinaProject(2011JQ006) supported by Fundamental Research Funds of the Central Universities of China
文摘The temporal variation of ventilation coefficient was estimated and a simple model for the prediction of urban ventilation coefficient in Changsha was developed. Firstly, Pearson correlation analysis was used to investigate the relationship between meteorological parameters and mixing layer height during 2005-2009 in Changsha, China. Secondly, the multi-linear regression model between daytime and nighttime was adopted to predict the temporal ventilation coefficient. Thirdly, the validation of the model between the predicted and observed ventilation coefficient in 2010 was conducted. The results showed that ventilation coefficient significantly varied and remained high during daytime, while it stayed relatively constant and low during nighttime. In addition, the diurnal ventilation coefficient was distinctly negatively correlated with PM10 (particle with the diameter less than 10 μm) concentration in Changsha, China. The predicted ventilation coefficient agreed well with the observed values based on the multi-linear regression models during daytime and nighttime. The urban temporal ventilation coefficient could be accurately predicted by some simple meteorological parameters during daytime and nighttime. The ventilation coefficient played an important role in the PM10 concentration level.
基金funded through the basic DLR funding of the Helmholtz AssociationSpecific support for several projects was given by the German Federal Ministry of Economics and Technology and the German Federal Ministry for the Environment,Nature Conservation and Nuclear SafetyThe CellFlux project is funded by E.ON AG as part of the International Research Initiative.Responsibility for the content of this publication lieswith the authors
文摘Thermal energy storage(TES)is a key technology for renewable energy utilization and the improvement of the energy efficiency of heat processes.Sectors include industrial process heat and conventional and renewable power generation.TES systems correct the mismatch between supply and demand of thermal energy.In the medium to high temperature range(100~1000℃),only limited storage technology is commercially available and a strong effort is needed to develop a range of storage technologies which are efficient and economical for the very specific requirements of the different application sectors.At the DLR's Institute of Technical Thermodynamics,the complete spectrum of high temperature storage technologies,from various types of sensible over latent heat to thermochemical heat storages are being developed.Different concepts are proposed depending on the heat transfer fluid(synthetic oil,water/steam,molten salt,air)and the required temperature range.The aim is the development of cost effective,efficient and reliable thermal storage systems.Research focuses on characterization of storage materials,enhancement of internal heat transfer,design of innovative storage concepts and modelling of storage components and systems.Demonstration of the storage technology takes place from laboratory scale to field testing(5 kW^1 MW).The paper gives an overview on DLR's current developments.
文摘A modified hot wire method was applied to measure the thermal conductivity of different kinds of parti culate materials. With a cylindrical device, a heating rod and two thermocouples, the measurement can be finished within several minutes. Compared with the reference data, the results obtained from the measurements were quite reasonable.
文摘Objective Air pollution is an important risk factor for cardiovascular diseases throughout the world.Fine particulate matter(PM)air pollution alone is responsible for over three million deaths each year.Large and growing literature has explored whether short-term exposure to fine particulate matter is associated with stroke,but results from prior studies have been inconsistent.To fill this gap,we assessed the evidence quantitatively from epidemiological time-series studies published worldwide and determined whether short-term exposure to fine particulate matter(<2.5μm or<10μm)diameter[PM2.5 and PM10]was associated with increased risk of hospital admission for stroke(including ischemic and hemorrhagic stroke).
文摘AlN particulate reinforced 6061 aluminum alloy composite was fabricated by powder metallurgy method and hot rolled after extrusion. Tensile strength and elongation at elevated temperature were measured by tensile test at initial strain rates between 10 -2 s -1 and 10 0 s -1 . The AlNp/6061Al composite exhibits an m value of 0.42 and a maximum elongation of 450% at 863?K. Differential scanning calorimeter was used to ascertain the possibility of any partial melting in the vicinity of optimum superplastic temperature. Partial melting resulting from solute segregation at interfaces has much influence on superplasticity of the composite. It is postulated that AlNp/matrix interface sliding occurs along with grain boundary in superplastic deformation.